

Problem Statement And Usage Scenarios for PANA

Andreas Blinzler

Agenda

□ Introduction

- What is PANA?
- O Network Access Provider / Internet Service Provider
- Extensible Authentication Protocol
- O Client authentication with PANA
- Ad-hoc mechanisms
- Usage Scenarios
 - PANA with physical layer security
 - PANA with link-layer security
 - PANA in the absence of any lower-layer security
 - O Mobile IP
 - O Personal area networks
 - Limited free access

Introduction

Introduction

- □ Source: draft-ietf-pana-usage-scenarios-06.txt
- □ PANA = Protocol for carrying Authentication for Network Access
- Network access authentication
 - Physical security
 - Link-layer security
 - Network- or higher-layer security
- □ Status quo
 - No Standard protocol to perform network access authentication above the link-layer
 - Instead some ad-hoc solutions are being used
 - PANA will be developed to fill this gap

Introduction

Internet Layer

application layer

transport layer

network layer

link layer

physical layer

PANA

- A protocol for authentication and authorization
- This protocol must execute one or more authentication methods (e.g. PAP, CHAP, TLS, SIM, etc.)
- The authentication methods need not to be tied to the underlying link-layer (e.g. GPRS, IEEE 802.11, DSL, etc.)
- The authentication protocol must be able to support various authentication methods

□ Seperation

- \circ <u>NAP</u> provides physical and link-layer connectivity for an access network
- \circ <u>ISP</u> provides internet connectivity for the NAP
- Important aspect of network access
 - Ability to enable dynamic ISP selection during the initial connection process
 - Example: Network Access Identifier [RFC2486]

□ Single authentication

- Generally sufficient for both NAP and ISP access by relying on the preestablished trust relation between the NAP and the ISP
- Multi-layer authentication
 - NAP authentication is realized with a link-layer mechanism
 - ISP authentication can be left to network layer mechanisms
 - Example:
 - Cdma2000 networks
 - GSM

- □ EAP = Extensible Authentication Protocol [RFC2284]
- □ Only IEEE 802 can carry EAP on the link-layer (IEEE 802.1X)
- Other link-layers resort to using PPP/PPPoE [RFC1661, RFC2516], with consequences
 - Additional round trips
 - O Overhead of PPP processing
 - "Point-to-point network model"
- □ Greater applicability if EAP could be carried directly over IP

- "Authenticate a client to a server for network access"
- Client authentication needs to be bound to subsequent traffic to prevent spoofing of data packets
- Realization
 - Secure physical or link-layer channel
 - Cryptographic keying material
- Keying material can be used with link-layer ciphers or IPSec

- Application-layer authentication method
 - HTTP redirect and web-based login
- Overload of an existing network layer protocol
 - Example: Mobile IPv4 [RFC3344]

□ Example: DSL network

PANA with physical layer security

- Single network access authentication solution would be an improvement for DSL
- □ PANA with point-to-point lines (DSL)
 - $\ensuremath{^{\bigcirc}}$ PANA can be used for client authentication
 - PANA build the basis for an appropriate access control mechanism

- Certain cellular link-layers provide their own authentication mechanisms
- Technology specific authentication enables authorization for link access by the NAP
- Multi-layered authentication for network access
 - Accessing the Internet via an ISP another layer of authentication is needed

Example: Cellular Telecommunication

□ Example: Cdma2000

- $\ensuremath{^{\bigcirc}}$ Authentication with the MSC / VLR is required
- Has its own authentication mechanism (uses CAVE)
- Modes of operation
 - Simple IP (CHAP via PPP)
 - Mobile IP (C/R protocol)
- PANA could be used as a single unifying network layer authentication mechanism

- Scenarios where neither physical nor link-layer access control is available
 - Due to the lack of adequate client authentication
 - Due to the difficulty of deployment
- Many providers use today
 - a higher-layer security
 - HTTP-redirect, commonly known as web-based login

- □ Standard solution is need: PANA
- Specified authentication methods must be able to derive and distribute keys for
 - Authentication
 - O Integrity
 - O Confidentiality
- Successful PANA authentication can result in a secured network environment
- Providers will have the advantage using a single framework across multiple environments

- Mobile nodes authenticate at the foreign and home agents
- Mode of operation
 - O Co-located care-of-address-mode

Access networks requirement

- Authenticate mobile nodes before allowing access
- Mobile Nodes are forced to send their registration requests via the foreign agent

□ PANA with Mobile IP:

- Can be used with any client
- Can support various authentication methods
- Can be used with IPv6 clients or dual-stack client

- □ PAN = <u>P</u>ersonal <u>A</u>rea <u>N</u>etwork
- Definition
 - A PAN is the interconnection of devices within the range of an individual person.
- Functionality

□ PANA with PAN

 Authentication is independent on the underlying link-layer (different nodes might be using different link-layers)

- PAN have a small scale
 - No need to support roaming
 - Authentication process does not necessarily require a managed backend AAA infrastructure for verification

Example: 3GPP architecture [RFC3314]

- Separation: MT and TE
- TE can connect to the internet via MT using PPP
- ${\rm O}$ One or more TEs can be connected to a MT to form a PAN
- Status quo of the architecture
 - No direct connection between the TEs
 - Connected through the cellular interface of the MT
- O Solution
 - Using shared links (ethernet) between TE and MT
 - Using PANA for authenticating PAN nodes when using shared links

- Network will only offer link-layer connectivity and limited network layer access to users
- Users have to perform a authentication to be allowed to go beyond the free access zone
- PANA can be an enabler to such limited free access scenarios

Conclusion

Conclusion

- Need for network access authentication at higher layer when L2 does not have an authentication mechanism
 - Not all L2 technologies support carrying EAP
 - Assuming every L2 to carry EAP is not realistic
 - Using PPP authentication for shared media is inefficient
- Need for higher layer authentication on top of L2 authentication
 - Multi-layer authentication is widely used and common higher layer authentication carrier protocol needs to be standardized
 - Web-based authentication that is widely used in hot-spot network access is known to be proprietary hack

Thank you