
 RFC 3706
A Traffic-Based Method of Detecting
Dead Internet Key Exchange (IKE) Peers

 (Czerny Andeas)
1.Introduction

2.Keepalives and Heartbeats
2.1 Keepalive
2.2 Heartbeats

3.DPD Protocol
3.1 Message exchanges
3.2 Message format
3.3 Implementation suggestion
3.4 DPD vs keepalive/heartbeats

4.Resistance to Replay Attack and False
 Proof of Liveliness

4.1 Sequence number in DPD mesages
4.2 Selection an maintenances of

 Sequence Numbers
4.3 Benefit of sequence numbers

5.List of literature

1.Introduction

When two peers communicate with IKE [2] and IPSec [3], the
situation may arise in which connectivity between the two

 goes down unexpectedly. This situation can arise because of
routing problems, one host rebooting, etc., and in such
cases, there is often no way for IKE and IPSec to identify the
loss of peer connectivity.

 As such, the SAs can remain until their lifetimes naturally
 expire, resulting in a "black hole" situation where packets
 are tunneled to oblivion. It is often desirable to recognize

black holes as soon as possible so that an entity can
failover to a different peer quickly. Likewise, it is
sometimes necessary to detect black holes to recover lost
resources.

This problem of detecting a dead IKE peer has been addressed
by proposals that require sending periodic HELLO/ACK messages

 to prove liveliness.
These schemes tend to be unidirectional (a HELLO only)
called „heartbeat“ or bidirectional (a HELLO/ACK pair) called
„keepalive“.

 The problem with current heartbeat and keepalive proposals is
 their reliance upon their messages to be sent at regular

intervals. In the implementation, this translates into
managing some timer to service these message intervals.

Similarly, because rapid detection of the dead peer is often
desired, these messages must be sent with some frequency,
again translating into considerable overhead for message
processing. In implementations and installations where
managing large numbers of simultaneous IKE sessions is of
concern, these regular heartbeats/keepalives prove to be
infeasible.

 To this end, a number of vendors have implemented their own
approach to detect peer liveliness without needing to send
messages at regular intervals. This informational document
describes the curre practice of those implementations. This
scheme, called Dead Peer Detection (DPD), relies on IKE Notify
messages to query the liveliness of an IKE peer.

2.Keepalives and Heartbeats

2.1 Keepalives:

Consider a keepalives scheme in which peer A and peer B
require regular acknowledgements of each other's liveliness.

 The messages are exchanged by means of an authenticated
 notify payload.

 The two peers must agree upon the interval at which
 keepalives are sent, meaning that some negotiation is
 required during Phase 1. For any prompt failover to be
 possible, the keepalives must also be sent at rather frequent

intervals -- around 10 seconds or so. In this hypothetical
keepalives scenario, peers A and B agree to exchange

 keepalives every 10 seconds.

Essentially, every 10 seconds, one peer must send a HELLO to
the other. This HELLO serves as proof of liveliness for the
sending entity. In turn, the other peer must acknowledge each
keepalive HELLO. If the 10 seconds elapse, and one

 side has not received a HELLO, it will send the HELLO message
itself, using the peer's ACK as proof of liveliness.

Receipt of either a HELLO or ACK causes an entity's keepalive
timer to reset. Failure to receive an ACK in a certain period
of time signals an error. A clarification is presented below:

Scenario 1
Peer A Peer B

A's 10 sec. Timer
elapses first

 HELLO
Sends HELLO to B --------------------> Receives HELLO

Acknowledges
A's liveiness

Resets keepalive
timer

 ACK
Receives ACK as <----------------- Send ACK
proof of B's
liveliness

Reset keepalive timer

Scenario 2
Peer A Peer B

 (dead)
A's 10 sec. Timer
elapses first

 HELLO
Sends HELLO to B --------------------> (dead)

Retransmission
timer expire

Message could have
lost in transit

A increments error
counter

 HELLO
Sends another HELLO <----------------- (dead)

2.2 Heartbeats

 By contrast, consider a proof-of-liveliness scheme
involving unidirectional (unacknowledged) messages.
An entity interested in its peer's liveliness would rely
on the peer itself to send periodic messages demonstrating
liveliness. In such a scheme, the message exchange might
look like this.

Scenario 3
Peer A Peer B

A's 10 sec. Timer
elapses first

 HELLO
Sends HELLO to B -----------------> Receives HELLO as

proof of A's liveiness

B's 10 sec. timer
elapses

 HELLO
Receives HELLO as <----------------- Sends HELLO
proof of B's
liveiness

Scenario 4
Peer A Peer B

 (dead)
A's 10 sec. Timer
elapses first

 HELLO
Sends HELLO to B --------------------> (dead)

...

Assumes B is dead

3.DPD Protocol
In a DPD Protocol each peer is free to request proof of

 liveliness when it needs it, and the asynchronous property
allows fewer messages to be sent. Another good idea is, to
use IPSec traffic as the proof of liveliness. So as long as
both peer has outbound traffic, no other methode is
necerssary. Furthermore, knowledge of the peer's liveliness
is only interesting if there is any traffic to be sent.

The decission about when to initiate a DPD exchange is
implementation specific. So each peer can define its own
„worry metric“, the time how long a peer is waiting until

 it sends a HELLO message to the other peer. And the peers DPD
state is largely independent of the other's.

3.1 Message exchanges
Bothe peers of an IKE session must send the DPD vendor ID
before DPD exchange can begin

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ! !M!M!
 ! HASHED_VENDOR_ID !J!N!
 ! !R!R!
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

MJR and MNR correspond to the current major and minor version
of this protocol.

Peer A Peer B

NOTIFY(R-U-THERE) -------------->

 <--------------- NOTIFY(R-U-THERE-ACK)

The DPD exchange is a bidirectional message and bothe are
simply ISAKMP Notify payloads.
(Internet Security Association and Key Management Protocol)

Notify Message Value

R-U-THERE 36136
R-U-THERE-ACK 36137

A peer must keep track of the state of a given DPD exchange
and retranskit R-U-THERE queries when it fails to receive an
a R-U-THERE-ACK. If after a number of messages no ACK is
returning, the peer deletes the IPSec and IKE Sas to the other
peer.

3.2 Message format
The R-U-There message must have the following form.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload ! RESERVED ! Payload Length !
 +-+
 ! Domain of Interpretation (DOI) !
 +-+
 ! Protocol-ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ~ Security Parameter Index (SPI) ~
 ! !
 +-+
 ! Notification Data !
 +-+

As this message is an ISAKMP NOTIFY, the Next Payload,
RESERVED, and Payload Length fields should be set
accordingly.

– Domain of Interpretation (4 octets) - SHOULD be set to
IPSEC-DOI.

 - Protocol ID (1 octet) - MUST be set to the protocol ID
 for ISAKMP.

 - SPI Size (1 octet) - SHOULD be set to sixteen (16), the
 length of two octet-sized ISAKMP cookies.

 - Notify Message Type (2 octets) - MUST be set to R-U-THERE.

 - Security Parameter Index (16 octets) - SHOULD be set to
 the cookies of the Initiator and Responder of the IKE SA
 (in that order).

 - Notification Data (4 octets) - MUST be set to the sequence
 number corresponding to this message.

The format of the R-U-THERE-ACK message is the same, with the

 exception that the Notify Message Type MUST be set to
R-U-THERE-ACK. Again, the Notification Data MUST be sent to
the sequence number corresponding to the received R-U-THERE
message.

3.3 Implementation suggestion

The liveliness of a peer is only questionable when no traffi
is exchange, so a viable implementation might begin by
monitoring idleness. Also the peer's liveliness is only
important when there is any outbound traffic to be sent.
A peer should only initiate a DPD exchange if outbound IPSec
traffic was sent, but no inbound IPSec packets was received.
So a complete DPD exchange will serve as proof of liveliness
untill the nect idle period.

3.4 DPD vs keepalive/heartbeats

PDP has got a performance benefit, because it is not
necssesary to sent regular messages to the other peer.
So the number of IKE messages to be sent and processed is
reduced. Another benefit is that DPD needs only 1 timer,
dring keepalive/heartbeats needs 1 timer for the periodic sent
od the HELLO message, and 1 elapse timer.

4. Resistance to replay attack and false
 proof of liveliness

4.1 Sequence number in DPD messages

Every peer has his own sequence number, that increments by 1
after sending a R-U-THERE message. A responder to an R-U-THERE
message must send an R-U-THERE-ACK with the same sequence
number. The initial sender reject the R-U-THERE-ACK if the
sequence number fails to match the one sent with the R-U-THERE
message. Additional both should check the validity of the
initiator and responder cookies in the SPI field of the
payload.

4.2 Selection an maintenances of Sequence Numbers

Both DPD peers can initiate a DPD exchange, but each peer
must maintain its own sequence number. The first R-U-THERE
message sent in a session, must be a randomly chosen number.
To prevent an overflow, the high-bit of the sequence number
initially should be set to zero. Its also beneficial if the
sequence numbers reset at the expiry of the IKE SA.

4.3 Benefit of sequence numbers

Sequence numbers help to detecting replayed messages. So if
someone starts a „man in the middle“ attack, its only
necessary to decrypt the message and proof the sequence
number. But for replayed messages the peer don't have to
build, encrypt and send an ACK.

The sequence number is also an extra assurance of the peer's
liveliness. As long as the sequence number increases, the peer
must be alive.

5. List of literature

- RFC 3706 (http://www.faqs.org/rfcs/)

