
Solutions

1. Introduction

1. Let k = 2l, l ∈ N. The number 2k − 1 = 22l − 1 is divisible by 3. To
understand this, we calculate 22l mod 3 = (22 mod 3)l =1. Thus, 2k − 1
is divisible by 3.

From n = 2k−1
3 ∈ N for even k ∈ N, it follows that 2k − 1 = 3n. Hence,

n is odd. Since 3n+ 1 = 2k, Col(n) terminates.

2. The invariant of the for loop reads: a[1], . . . , a[i] is sorted. We show the
invariant by induction on i. The induction start for i = 1 is correct. Let
i ≥ 2. We assume that a[1..i− 1] is sorted and show the step from i− 1
to i. If x ≥ a[j] = a[i− 1], then a[i] = x (line 6). Thus, a[1..i] is sorted.
We consider the case x < a[j]. After termination of the while loop (i.e.,
immediately before line 6 is executed) the following is true:

a[1] ≤ a[2] ≤ . . . ≤ a[j] ≤ a[j + 2] ≤ a[j + 3] ≤ . . . ≤ a[i] and

a[j] ≤ x < a[j + 2].

We show this by induction on the number k of executions of the while
loop. The condition is fulfilled if k = 1, i.e., j = i − 2. So let k > 1. We
show the step from k − 1 to k, i.e., from j to j − 1.
By descending induction to j, it follows that

a[1] ≤ a[2] ≤ . . . ≤ a[j], a[j + 2] ≤ a[j + 3] ≤ . . . ≤ a[i] and x < a[j + 2].

After termination of the while loop, the following holds: x ≥ a[j]. In
total, a[1..i] is sorted. For i = n, it follows that a[1..n] is sorted, i.e., the
algorithm is correct.

3. We have
T1(m1) = c1m1 = T,

T2(m2) = c2m2
3 = T,

T3(m3) = c32
m3 = T,

c1km1 = kT,

c2km2
3 = c2(

3
√
km2)

3 = kT,

c3k2
m3 = c32

ld(k)+m3 = kT.

2 Introduction

The new maximum sizes of the entries m̃i, i = 1, 2, 3, are m̃1 = km1,
m̃2 = 3

√
k ·m2 and m̃3 = ld(k) +m3.

4. With respect to the asymptotic growth, we have
f9 < f5 < f11 < f4 = f3 < f6 < f12 < f2 < f8 < f7 < f1 < f10

f9 < f5 : 1/3n log(log(n)) −→ 0, n −→∞.

f5 < f11 : log(log(n))/
√

log(log(n)) log(n)

=

√
log(log(n))2/log(log(n)) log(n)

=
√

log(log(n))/log(n) −→ 0, n −→∞.

f11 < f4 :
√

log(log(n)) log(n)/log(
√
n) =√

log(log(n)) log(n)/(1/2 log(n))2√
4 log(log(n)/log(n) −→ 0, n −→∞.

f4 = f3 : log(
√
n)/log(n) = 1/2.

f3 < f6 : log(n)/log(n)2 = 1/log(n) −→ 0, n −→∞.

f6 < f12 : log(n)2/2
√

log(log(n)) log(n) =

2log(log(n)
2)−
√

log(log(n)) log(n) −→ 0, n −→∞,

since, log(log(n)2)−
√
log(log(n)) log(n) =√

log(log(n)) log(n)

(
2

√
log(log(n))

log(n)
− 1

)
−→ −∞,

n −→∞.

f12 < f2 : 2
√

log(log(n)) log(n)
/
√
n =(

22
√

log(log(n)) log(n)−log(n)
)1/2

−→ 0, n −→∞,

since, 2
√
log(log(n)) log(n)− log(n) =

log(n)

(
2

√
log(log(n))

log(n)
− 1

)
−→ −∞, n −→∞.

f2 < f8 :
√
n/
√
n log(n)2 = 1/log(n)2 −→ 0, n −→∞.

f8 < f7 :
√
n log(n)2 log(n)/n = log(n)3/

√
n −→ 0, n −→∞.

f7 < f1 : n/n log(n) = 1/log(n) −→ 0, n −→∞.

f1 < f10 : n/(3/2)n = n/2n(log(3)−1) −→ 0, n −→∞.

5. f1 and f2 have the same order,
f1, f2, f3 = O(f4),

Algorithms and Data Structures by H. Knebl

Solutions 3

f1, f2, f4 ̸= O(f3),
f3 ̸= O(f1), f3 ̸= O(f2).

6. We first investigate the behavior of n(n
√
n− 1) for n→∞.

lim
n→∞

n(n
√
n− 1) = lim

n→∞

n
1
n − 1
1
n

= lim
x→0

(
1
x

)x − 1

x

= lim
x→0

ex ln(1
x) − 1

x
.

Because of limx→0 x ln
(
1
x

)
= limy→∞

ln(y)
y = 0 the limit of this quo-

tient is of the form “ 0
0”. We apply the rule of l’Hopital and differentiate

numerator and denominator.
From d

dx

(
x ln

(
1
x

))
= ln

(
1
x

)
− 1, it follows that

d

dx

(
ex ln(1

x) − 1
)
= ex ln(1

x)
(
ln

(
1

x

)
− 1

)
.

Since

lim
x→0

ex ln(1
x)
(
ln
(
1
x

)
− 1
)

1
=∞,

we have limn→∞ n(n
√
n− 1) =∞ (which is not obvious).

We now show that n(n
√
n− 1) = O(ln(n)) holds.

lim
n→∞

n(n
√
n− 1)

ln(n)
= lim

n→∞

n
1
n − 1
ln(n)
n

= lim
x→0

ex ln(1
x) − 1

x ln
(
1
x

) (
= “ 0

0”
)
.

Because of

lim
x→0

ex ln(1
x)
(
ln
(
1
x

)
− 1
)

ln
(
1
x

)
− 1

= lim
x→0

ex ln(1
x) = 1

we have

lim
n→∞

n(n
√
n− 1)

ln(n)
= 1.

Thus n(n
√
n− 1) = O(ln(n)).

f2 = O(nk), since(n
k

)
k!

1

nk
=

n(n− 1) . . . (n− (k − 1))

n · n . . . n
=

(
1− 1

n

)
. . .

(
1− k − 1

n

)
converges to 1 for n −→∞.

c⃝H. Knebl 2020

4 Introduction

7. The difference equation

kn =
(
1 +

p

100

)
kn−1 + c, k0 = k,

has the solution

kn =
(
1 +

p

100

)n(
k +

n∑
i=1

c
(
1 +

p

100

)−i
)

= k
(
1 +

p

100

)n
+ c

n∑
i=1

(
1 +

p

100

)n−i

= k
(
1 +

p

100

)n
+ c

n−1∑
i=0

(
1 +

p

100

)i
= k

(
1 +

p

100

)n
+

100c
((
1 + p

100

)n − 1
)

p
.

8. a. Solution of the equation:

πn =

n∏
i=2

1 = 1, n ≥ 1, xn = 1 +

n∑
i=2

i =
n(n+ 1)

2
.

b. Solution of the homogeneous equation:

πn =

n∏
i=2

i+ 1

i
=

n+ 1

2
, n ≥ 1.

Solution of the equation:

xn =
n+ 1

2

n∑
i=2

4(i− 1)

i(i+ 1)

= 2(n+ 1)

n∑
i=2

(
2

i+ 1
− 1

i

)
= 2(n+ 1)

(
Hn +

2

n+ 1
− 2

)
= 2(n+ 1)Hn − 4n.

9.
x1 = 2, xn = 2n · xn−1 + (n+ 1)!.

πn =

n∏
i=2

2i = 2n−1n!.

xn = 2n−1n!

(
2 +

n∑
i=2

(i+ 1)!

2i−1i!

)

Algorithms and Data Structures by H. Knebl

Solutions 5

n∑
i=2

i

2i−1
+

n∑
i=2

1

2i−1

=
(n+ 1) (1/2)

n
(−1/2)− ((1/2)

n − 1)
1/4

− 1 +
(1/2)

n − 1

−1/2
− 1

= 4(−(n+ 1) (1/2)
n+1 − (1/2)

n+1
+ 1)− 1− 2 ((1/2)

n − 1)− 1

= 4− (n+ 3) (1/2)
n−1

.

xn = 2n−1n!(2 + 4− (n+ 3) (1/2)
n−1

)

= n!(3 · 2n − (n+ 3))

10.

x1 = 0, xn =

n−1∑
i=1

xi + 2(n− 1).

xn − xn−1 = xn−1 + 2(n− 1)− 2(n− 2).

xn = 2xn−1 + 2.

πn =

n∏
i=2

2 = 2n−1.

xn = 2n−1
n∑

i=2

2

2i−1
= 2n

n−1∑
i=1

1

2i
=

n−1∑
i=1

2i = 2n − 2.

11. Let n = 22
k

and xk = T (22
k

). Then k = log2(log2(n)).

T (n) = T (
√
n) + log2(n)

l, l = 0, 1.

xk = T (22
k

) = T (22
k−1

) + (2l)k.

xk = xk−1 + (2l)k, x1 = 2l.

xk = 2l +

k∑
i=2

(2l)i =

k∑
i=1

(2l)i =

{
k for l = 0,
2k+1 − 2 for l = 1.

Applying the transformation k = log2(log2(n)), we get

T (n) = xlog2(log2(n))

=

{
log2(log2(n)) for l = 0,
2log2(log2(n))+1 − 2 = 2(log2(n)− 1) for l = 1.

c⃝H. Knebl 2020

6 Introduction

12. By Proposition 1.15

xk = ak−1(ad+ cbl) + ak−1c

k∑
i=2

bli

ai−1
= akd+ cak

k∑
i=1

(
bl

a

)i

=

akd+ cnl q
k−1
q−1 , falls q ̸= 1,

akd+ cknl, falls q = 1.

Applying the inverse transformation k = logb(n) we get

T(b)
(n) = xlogb(n)

=

dalogb(n) + cnl qlogb(n)−1

q−1 if bl ̸= a,

dalogb(n) + cnl logb(n) if bl = a.

Note, that logb(n) = ⌊logb(n)⌋ for n = bk.

13. a = 1, l = 0:
T (n) = 1 + ⌊log2(n)⌋ = O(log2(n)).

a = 1, l = 1:

1 + n

(
1−

(
1

2

)⌊log2(n)⌋
)
≤ T (n) ≤ 1 + 2n

(
1−

(
1

2

)⌊log2(n)⌋
)

= O(n)

a = 2, l = 0:
T (n) = 2⌊log2(n)⌋+1 − 1 = O(n)

a = 2, l = 1:

2⌊log2(n)⌋ +
n

2
⌊log2(n)⌋ ≤ T (n) ≤ 2⌊log2(n)⌋ + n⌊log2(n)⌋ = O(n log2(n)).

14. The number of recursive calls is

an = an−1 + 1, a1 = 1.

This equation has the solution an = n, i.e., n stack frames are required.

15. We display the call hierarchy for solving the puzzle for n slices: The call
TowersOfHanoi(n,A,B,C) causes the call TowersOfHanoi(n−1, A, C,B),
the move of the nth disc from A to B and the call TowersOfHanoi(n −
1, C,B,A)

Algorithms and Data Structures by H. Knebl

Solutions 7

..AB.

AC

.

AB

.

AC

.

. . .

.

CB

.

BC

.

BA

.

AC

.

CB

.

CA

.

CB

.

BA

.

AB

.

AC

.

CB

Fig. 2.1: Call hierarchy for TowersOfHanoi.

Note the arrangement in each level:
AB,BC,CA, . . . or AC,CB,BA,
We get the necessary steps for the solution, if we traverse this tree inorder.
For n = 4, for example, the result is the sequence
AC,AB,CB,AC,BA,BC,AC,AB,CB,CA,BA,CB,AC,AB,CB.
The first step corresponds to the node that is on the far left on the lowest
level. It is AB if n is odd and AC if n is even. We number the nodes
in the order of in-order traversal. Numbers: 1, 3, 5, . . . are leaves, i.e., the
nodes of level n− 1.
Numbers: 2, 6, 10, . . . are nodes of level n− 2. Numbers: 4, 12, 20, . . . are
the nodes of the level n− 3.
The nodes are distributed among the individual levels as follows:

level first node distance gen. form number of
n− 1 1 2 1 + j ∗ 2, j = 0, . . . , 2n−1 − 1 2n−1

n− 2 2 22 2 + j ∗ 22, j = 0, . . . , 2n−2 − 1 2n−2

...
...

...
...

...
n− i 2i−1 2i 2i−1 + j ∗ 2i, j = 0, . . . , 2n−i − 1 2n−i

...
...

...
...

...
1 2n−2 2n−1 2n−2 + j ∗ 2n−1, j = 0, 1 = 21 − 1 2
0 2n−1 2n−1 1

A node with the number k is located in the ith level if and only if

k mod 2n−i−1 = 0 und k mod 2n−i ̸= 0.

This means that in the binary expression for k the first 1 from the left is
at the position n− i.
For n = 4 we get

AC AB CB AC BA BC AC AB CB CA BA CB AC AB CB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 2 3 1 3 2 3 0 3 2 3 1 3 2 3

c⃝H. Knebl 2020

8 Introduction

The second line indicates the number of the node and the third line indi-
cates the level in which the node is located.

Starting from a leaf k (k odd), the successor k + 1 and the successor
k + 2 of the successor can be simply determined: If the node k + 1 is
located in the level l, which can be calculated according to the formula
from above, then the node k is one time left successor and n− l−2 times
right successor of k+1 in the tree. Starting from k you follow in the tree
n− l− 2 times to the left and once to the right to get to the predecessor
k+1. If a node is a left successor, the first symbol of the labeling is taken
from the predecessor node, the second symbol from the predecessor is
changed. For a right successor, it is just the opposite. If you turn left on
the way to the predecessor n− l−2 times, the second symbol is kept. The
first symbol is changed when n−l−2 is odd. If you turn to the right-hand
side once, the first symbol is retained and the second is changed.
The successor k + 2 of the successor k + 1 is the leaf to the right of k.
Applying these rules, we get the following table, which shows the succes-
sor and the successor of the successor

k k + 1, n− l − 2 gerade k + 1, n− l − 2 ungerade k + 2
AB AC CA BC
AC AB BA CB
BA BC CB AC
BC BA AB CA
CA CB BC AB
CB CA AC BA

16. When using the generic algorithm (Algorithm 1.34) for matroids, it must
be decided at each step whether O ∪ {si} is admissible. To do this, we
keep the list O of selected tasks sorted in ascending order by completion
time, i.e., we keep the sorting when adding the next task si. We place
si at the end of the list and sort the list with InsertionSort (Algorithm
1.57).
Let si be the li–th element in the sorted list. O ∪ {si} is allowed if and
only if li ≤ the completion time of si. To implement O with an array, li
is the index of si. If O is implemented with a chained list, the numbering
of the order must be explicit.

17. Let nl > nl−1 > n1 be the values of the coins (n1 = 1) We are looking
for ν1, . . . , νl ≥ 0 with

l∑
i=1

νini = n and

l∑
i=1

νi minimal.

Greedy strategy: We set rl = n and calculate successively for i = l . . . 1

νi =

⌊
ri
ni

⌋
, ri−1 = ri mod ni = ri − νini.

Algorithms and Data Structures by H. Knebl

Solutions 9

Available denominations: 1 cent, 2 cent, 5 cent, 10 cent, 20 cent, 50 cent,
100 cent, 200 cent
For a solution generated by the above algorithm we have

ν1 ≤ 1, ν2 ≤ 2, ν3 ≤ 1,
ν4 ≤ 1, ν5 ≤ 2, ν6 ≤ 1,
ν7 ≤ 1.

An optimal solution also meets all these conditions. Because, if one of
the conditions is violated, a solution can can be found with fewer coins.
These conditions determine a solution uniquely. n mod 5 = ν1 + 2ν2.
Therefore, ν1 and ν2 are uniquely determined (n mod 5 = 0: ν1 = 0, ν2 =
0; n mod 5 = 1: ν1 = 1; n mod 5 = 2: ν2 = 1; n mod 5 = 3: ν1 = 1, ν2 = 1;
n mod 5 = 4: ν2 = 2). ν3 is 0, if and only if (n − ν1 − 2ν2) mod 10 = 0.
Hence, ν3 is uniquely determined. ν4 is 0, if and only if (n− ν1 − 2ν2 −
5ν3) mod 20 = 0. Thus, ν4 is uniquely determined. (n− ν1 − 2ν2 − 5ν3 −
10ν4) mod 50 uniquely determines ν5. (n−ν1−2ν2−5ν3−10ν4−20ν5) mod
100 uniquely determines ν6. (n−ν1−2ν2−5ν3−10ν4−20ν5−50ν6) mod
200 uniquely determines ν7. Thus, ν8 is also uniquely determined. The
above algorithm provides an optimal solution. (For the denominations
n3 = 11, n2 = 5, n1 = 1 the greedy strategy is not successful (n = 15)).

18. We convert the recursive formula for solving the editing distance into a
recursive algorithm P(i, j). Let T (i, j) be the number of calls necessary
to calculate with the algorithm P d(i, j). Then

T (0, 0) = T (i, 0) = T (0, j) = 1,

T (i, j) = T (i, j − 1) + T (i− 1, j) + T (i− 1, j − 1) + 1.

Hence
T (n,m) ≥ 3T (n− 1,m− 1) ≥ 3k, k = min{n,m}.

Although there are only (n+1) ·(m+1) subproblems, the running time is
exponential. This is true because the same distances are calculated over
and over again. For large n and m the algorithm cannot be used.

19. The recursive formula for l(n,m) is

l(0, 0) = 0, l(i, 0) = 0, l(0, j) = 0,

l(i, j) = l(i− 1, j − 1) + 1 if i, j > 0 und ai = bj ,

l(i, j) = max{l(i, j − 1), l(i− 1, j)} if i, j > 0 and ai ̸= bj .

Apply dynamic programming to compute l(n,m).

20. Let mn = maxi,j≤n f(i, j). We define Mk, Nk by

M1 = N1 = a1,

Nk = max{Nk−1 + ak, ak}, k ≥ 2,

Mk = max{Mk−1, Nk}, k ≥ 2.

c⃝H. Knebl 2020

10 Introduction

By induction on k, it follows that

Nk = max
i

f(i, k) und Mk = mk = max
i,j≤k

f(i, j).

The assertion holds for k = 1. Step from k − 1 to k:

Nk = max{Nk−1+ak, ak} = max{max
i

f(i, k−1)+ak, ak} = max
i

f(i, k).

We distinguish the two cases:
a. ak does not occur in the calculation of mk.

Then mk = mk−1 = Mk−1 = Mk.
b. ak appears in the calculation of mk.

Then mk = maxi f(i, k) = Nk = Mk.
We calculate the sequences (Nk)k=1,...,n and (Mk)k=1,...,n with dynamic
programming.

21. We follow with our solution [MotRag95, page 171]. Without restriction we
assume a, b ∈ {0, 1}∗. We consider ai . . . ai+m−1 and b1 . . . bm as binary
representations of numbers with the most significant digit on the left.
The string b is a substring of a, if ai . . . ai+m−1 = b1 . . . bm for an i,
1 ≤ i ≤ n−m+1. Solving the problem by a complete search has a running
time in the order O(mn). A more efficient solution can be developed by
using fingerprints.
We choose a family of hash functions

hp : {0, 1}l −→ {0, . . . , p− 1}, x 7−→ x mod p,

as in Section 1.6.2. The collision probability for a randomly chosen prime
number p is for x ̸= y

p(hp(x) = hp(y)) ≤
1

t
.

(Proposition 1.51). We no longer compare substrings ai . . . ai+m−1 of a
and b1 . . . bm, but their hash values

hp(ai . . . ai+m−1) = hp(b1 . . . bm).

We have

ai+1 . . . ai+m = 2(ai . . . ai+m−1 − ai2
m−1) + ai+m.

Thus

hp(ai+1 . . . ai+m) = 2(hp(ai . . . ai+m−1)− ai2
m−1) + ai+m mod p.

hp(ai+1 . . . ai+m) can be calculated from hp(ai . . . ai+m−1) in constant
time. We get an algorithm with the running time O(n + m). For
hp(ai . . . ai+m−1) = hp(b1 . . . bm) we can check in the time O(m) whether
a collision is present.

Algorithms and Data Structures by H. Knebl

Solutions 11

2. Sorting and Searching

1. a. Algorithm 2.1.

Sort2(item a[1..n])
1 index l, r, boolean loop← true
2 l← 1, r ← n, a[0]← 1, a[n+ 1]← 2
3 while loop do
4 while a[l] = 1 do l← l + 1
5 while a[r] = 2 do r ← r − 1
6 if l < r
7 then exchange a[l] and a[r]
8 l = l + 1, r = r − 1
9 else loop← false

First, the records which contain 3 are placed at the end of the array,
analogous to Sort2. Then Sort2 is applied to the part of the array
containing only 1 and 2.

b. Algorithm 2.2.

Sort(item a[1..n])
1 index i = 1, j
2 while i ≤ n do
3 j ← a[i].key
4 if i = j
5 then i← i+ 1
6 else exchange a[i] and a[j]

2. Let ai be the number of executions of line i in the worst case and ãi the
number of executions of line i on average – each depending on n.

a. Sorting by insertion (Algorithm 1.57).
Comparisons in line 4:

a4 =

n∑
i=2

i =
n(n+ 1)

2
− 1 =

n2

2
+

n

2
− 1.

ã4 = number of inversions + (n− 1):

ã4 =
n(n− 1)

4
+ (n− 1) =

n2

4
+

3n

4
− 1.

a5 =

n∑
i=2

(i− 1) =
n(n− 1)

2
=

n2

2
− n

2
.

ã5 = number of inversions on average

ã5 =
n(n− 1)

4
=

n2

4
− n

4
.

c⃝H. Knebl 2020

12 Sorting and Searching

We summarize the results:

Zeile i ai ãi
3, 6 n− 1 n− 1

4 n2
/2+ n/2− 1 n2

/4+ 3n/4− 1

5 n2
/2− n/2 n2

/4− n/4

b. BubbleSort (Algorithm 2.32).

a4 = ã4 =

n−1∑
i=1

(n− i) =

n−1∑
i=1

i =
n(n− 1)

2
=

n2

2
− n

2
.

a5 = a4 =
n2

2
− n

2
.

ã5 = number of inversions on average

ã5 =
n(n− 1)

4
=

n2

4
− n

4
.

Summarizing, we get

Zeile i ai ãi
4 n2

/2− n/2 n2
/2− n/2

5 n2
/2− n/2 n2

/4− n/4

The worst case scenario is the reverse sorted array. In this case, line
5 is executed each time.

For the number of comparisons in the worst case (Cw), the number of
comparisons on average (C∅), the number of assignments in the worst
case (Aw) and the number of assignments on average (A∅) we get:

SelectionSort InsertionSort BubbleSort

Cw
n2

/2− n/2 n2
/2+ n/2− 1 n2

/2− n/2

C∅ n2
/2− n/2 n2

/4+ 3n/4− 1 n2
/2− n/2

Aw
n2

/2− 7n/2− 4 n2
/2+ 5n/2− 3 3n2

/2− 3n/2

A∅ (n+ 1)Hn + 2n− 4 n2
/4+ 11n/4− 3 3n2

/4− 3n/4

3. InsertionSort and BubbleSort are stable.
SelectionSort is not stable. 21, 22, 1 becomes 1, 22, 21. SelectionSort can
be implemented stable. For this all elements from the insertion point to
the position before the minimum are shifted one position to the right.
This reduces the performance considerably.
Quicksort and heapsort are not stable.

4. The while loop in the Algorithm 2.1 terminates with l = r if and only if
a[r] ≤ x and a[l] ≥ x holds, i.e., a[l] = a[r] = x (= a[j]). If all elements

Algorithms and Data Structures by H. Knebl

Solutions 13

in a are pairwise distinct, the while loop in the Algorithm 2.1 terminates
with l = r + 1. Thus, n+ 1 comparisons take place. We get

C̃(n, i) = C(i− 1) + C(n− i) + n+ 1.

C(n) is the mean value of the C̃(n, i):

C(n) =
1

n

n∑
i=1

C̃(n, i)

=
1

n

n∑
i=1

(C(i− 1) + C(n− i) + n+ 1)

=
2

n

n−1∑
i=0

C(i) + n+ 1, n ≥ 2,

We set

xn =

n∑
i=0

C(i).

Then

xn − xn−1 =
2

n
xn−1 + n+ 1.

We get the difference equation

x1 = C(0) + C(1) = 0,

xn =
n+ 2

n
xn−1 + n+ 1, n ≥ 2.

That equation has the solution

xn = (n+ 1)(n+ 2)

(
Hn+1 +

1

n+ 2
− 11

6

)
(page 16, (d)). We get

C(n) =
2

n
xn−1 + n+ 1 = 2(n+ 1)Hn −

8n+ 2

3
.

5. The execution of exchange in line 11 is superfluous if the pivot element
is the largest element. This is the case with probability 1

n . The average
number of exchanges (without recursion) averaged over all pivot elements
is

1

n

n∑
i=1

(
(i− 1)(n− i)

n− 1
+ 1− 1

n

)
=

(n+ 4)

6
− 1

n
.

We set xn =
∑n

i=0 E(i) and get

c⃝H. Knebl 2020

14 Sorting and Searching

x1 = E(0) + E(1) = 0,

xn =
n+ 2

n
xn−1 +

n+ 4

6
− 1

n
, n ≥ 2.

The solution of this equation is

xn =
(n+ 1)(n+ 2)

6

(
n∑

i=2

i+ 4

(i+ 1)(i+ 2)
−

n∑
i=2

6

i(i+ 1)(i+ 2)

)

=
(n+ 1)(n+ 2)

6

(
Hn+1 −

5

n+ 2
+

3

n+ 1
− 4

3

)
.

Using partial fraction decomposition, we get

6

i(i+ 1)(i+ 2)
=

3

i
− 6

i+ 1
+

3

i+ 2
.

The average number of exchanges

E(n) =
2

n
xn−1 +

n+ 4

6
− 1

n

=
n+ 1

3

(
Hn −

5

n+ 1
+

3

n
− 4

3

)
+

n+ 4

6
− 1

n

=
1

3
(n+ 1)Hn −

5n+ 8

18
.

6. We have to solve

T (n) = cn+
2

n

n−1∑
i=0

T (i), n ≥ 2, T (0) = T (1) = b.

The aim is to transform this recursion into a difference equation by a
suitable substitution. For recursions in which the n–th element depends
on the sum of all predecessors, this is achieved with the substitution

xn =

n∑
i=0

T (i).

Then

xn − xn−1 = cn+
2

n
xn−1.

Hence

xn =
n+ 2

n
xn−1 + cn, n ≥ 2, x1 = 2b.

The solution of that equation is

xn = (n+ 1)(n+ 2)

(
cHn+1 +

2c

n+ 2
+

1

6
(2b− 13c)

)
.

Algorithms and Data Structures by H. Knebl

Solutions 15

(equation (d), page 16).
From the solution for xn a solution for T (n) can easily be derived.

T (n) =
2

n
xn−1 + cn

=
2

n
n(n+ 1)

(
cHn +

2c

n+ 1
+

1

6
(2b− 13c)

)
+ cn

= 2c(n+ 1)Hn +
1

3
(2b− 10c)n+

1

3
(2b− c)

is a closed solution for T (n).

7. With n elements, the pivot element only needs to be compared once with
each of the n − 1 remaining elements. For this purpose the indices are
controlled. A comparison is only necessary if l < r holds and a comparison
for l = r. We get

C(1) = 0, C(n) = C

(⌊
n− 1

2

⌋)
+ C

(⌈
n− 1

2

⌉)
+ n− 1.

Then
C(n) ≤ 2C

(⌊n
2

⌋)
+ n− 1.

We replace ≤ with = and solve the recursion

C(n) = 2C
(⌊n

2

⌋)
+ n− 1.

Let n = nk−1 . . . n0, nl−1 = 1, the binary expression of n. Then k =
⌊log2(n)⌋+ 1.

C(n) =

k−2∑
i=0

2i
(⌊ n

2i

⌋
− 1
)
≤ (k − 1)n− (2k−1 − 1)

= n⌊log2(n)⌋ − 2⌊log2(n)⌋ + 1

(Lemma 1.25 with gi(n) =
⌊

n
2i

⌋
, r(n) = n− 1 and d = 0).

8. See [Ďurian86].

9. Apply heapsort and stop after k-steps.

10. a. The number of comparisons is n − 1. This optimization is at the
expense of the number of exchanges. The code is remarkably simple.

b. Invariant of the for loop:

a[i], . . . , a[l − 1] ≤ x and a[l], . . . , a[k − 1] > x.

This is true for k = i. Because for k = i, we have l = i and for empty
arrays the statement is trivially correct.
Conclusion from k − 1 to k:

c⃝H. Knebl 2020

16 Sorting and Searching

If a[k] ≤ x, then a[k] and a[l] are swapped. After incrementing l,
a[i], . . . , a[l − 1] are ≤ x and after incrementing k, a[l], . . . , a[k − 1]
are > x.
If a[k] > x, l remains unchanged and after incrementing k,
a[l], . . . , a[k − 1] are > x.
The invariant remains valid even after termination of the for loop.
After execution of exchange in line 8, the pivot element is at position
l and the following holds a[i], . . . , a[l−1] are ≤ x and a[l+1], . . . , a[j]
are > x.
QuickSortVariant sorts the array a in ascending order. The subarrays
which are parameters of QuickSortVariant have a maximum of n −
1 elements, if n is the number of elements of a. The proof follows
immediately by induction.

11. Notes on the algorithm.
a. Pivot returns an index i ̸= 0 if there are at least two different ele-

ments. The pivot element is stored in a[i] and there is an element in
the a which is smaller than a[i].

b. The splitting process is only necessary if the return value of Pivot is
> 0.

c. The first exchange (line 5) is not necessary (but gives simple code).
d. After termination of repeat-until we have a[i], . . . , a[l − 1] < x and

a[l], . . . , a[j] ≥ x.
We assume, that the elements to be sorted are pairwise distinct.
Set n := j − i+1. Effort for lines 2 - 8 of QuickSort: cn, c constant. The
pivot element is located at the first or second position. Each of the n− 1
decompositions has the probability 1/(n−1). If you divide into arrays of
length r and n− r, the running time T (n) is recursively:

T (n) = T (r) + T (n− r) + cn, c constant.

Average term. For the average term T (n), this results in (averaged over
all decompositions):

T (n) = cn+
1

n− 1

n−1∑
r=1

(T (r) + T (n− r)) = cn+
2

n− 1

n−1∑
r=1

T (r), n ≥ 2.

We solve:

T (1) = b, T (n) = cn+
2

n− 1

n−1∑
i=1

T (i), n ≥ 2.

Set

xn =

n∑
i=1

T (i).

Then

xn − xn−1 = cn+
2

n− 1
xn−1.

Algorithms and Data Structures by H. Knebl

Solutions 17

We get the equation

x1 = b, xn =
n+ 1

n− 1
xn−1 + cn, n ≥ 2.

The solution of that equation is

πn =

n∏
i=2

i+ 1

i− 1
=

n(n+ 1)

2
, n ≥ 2, π1 = 1.

xn =
n(n+ 1)

2

(
b+

n∑
i=2

ci
2

i(i+ 1)

)

=
n(n+ 1)

2

(
b+ 2c

n∑
i=2

1

i+ 1

)

=
n(n+ 1)

2
(2cHn+1 − 3c+ b).

We get for T (n):

T (n) =
2

n− 1
xn−1 + cn

=
2

n− 1

(n− 1)n

2
(2cHn − 3c+ b) + cn

= 2cn(Hn − 1) + bn

Running time in the worst-case. The worst case occurs when in
each recursion step the decomposition process yields a one-element and
a (n− 1)-element set.

T (n) = T (n− 1) + T (1) + cn, T (1) = b.

has the solution

T (n) =

(
b+

n∑
i=2

(c · i+ b)

)
= c

(
n(n+ 1)

2
− 1

)
+ bn.

The worst case occurs with the specified pivot procedure for a sorted
array.

c⃝H. Knebl 2020

18 Sorting and Searching

12. Algorithm 2.3.

QuickSort(item a[i..j])
1 item x, index l, r
2 while i < j do
3 if p← Pivot(a[i..j]) ̸= 0
4 then x← a[p], l← i, r ← j
5 repeat
6 exchange a[l] and a[r]
7 while a[l] < x do l← l + 1
8 while a[r] ≥ x do r ← r − 1
9 until l = r + 1
10 QuickSort(a[i..l − 1])
11 i← l
12 else i← j

We show that the while loop always terminates. We look at two cases:
1. If Pivot(a, i, j) ̸= 0, the decomposition will be performed. After the
decomposition, i = l is set. Thus, i is increased by at least 1.
2. If Pivot(a, i, j) = 0, all elements in a[i..j] are equal and thus sorted.
i = j is set. The while-loop and QuickSort terminate. This case occurs
at the latest for i = j − 1.
The consideration shows that the while loop and QuickSort always termi-
nate. This results in a sequence of starting points: i1 = i < i2 < . . . < in.
ik and ĩk denotes the value of i at the kth iteration of the while loop at
loop entry or at loop exit. By induction on k, it follows that a[i, ĩk] is
sorted at loop exit. Thus, a[i..j] is sorted at termination.
This version of quicksort uses the same decompositions as Algorithm 2.34.
Therefore, the same formula for the running time is obtained.
QuickSort with logarithmically limited recursion depth. The idea
is to perform first the smaller part of the decomposition recursively. After
each recursive call, the number of elements reduces by more than half.
This results in a logarithmically limited recursion depth.

13. The number of assignments is the same for all variants.
Assignments in BuildHeap: Number of executions of row 2 + number of
executions of row 9 + number of executions of row 10 in DownHeap:

2 ·
⌊n
2

⌋
+ I1(n).

Assignments in the sorting phase: Number of executions of row 2 + num-
ber of executions of row 9 + number of executions of line 10 in DownHeap
+ 3 times number of executions of line 5 in Heapsort:

2(n− 1) + I2(n) + 3(n− 1) = 5(n− 1) + I2(n).

Algorithms and Data Structures by H. Knebl

Solutions 19

14. We consider an array with n = 2k− 1 elements which is sorted in reverse
order. In this case the upper bound is accepted. For example, consider
15,14,13,12,11,10,9,8,7,6,5,4,3,2,1. Each element ends up in a leaf when
percolating down. Thus, the maximum number of iterations is reached:

I(n) =

⌊n
2 ⌋∑

l=1

⌊
log2

(n
l

)⌋
.

15. Using Mergesort you can sort without additional memory. When merging
the sorted sub-arrays a[i, l] and a[l+1, j] the elements between insertion
position and extraction position are shifted one position to the right, if
an element from the second part is to be inserted,
With temp [1..⌊n/2⌋] as auxiliary memory this is not necessary. First copy
the first part into the auxiliary memory and merge the two parts into a.

In Merge, there are at most n− 1 comparisons. Let C(n) be the number
of comparisons. Then

C(n) ≤ C
(⌊n

2

⌋)
+ C

(⌈n
2

⌉)
+ n− 1, C(1) = 0.

We replace ≤ in the recursion with = and get an upper limit for the
number of comparisons. Set n = 2k and xk = C(2k). Then C(2k) =
2C(2k−1) + 2k − 1 and C(2) = 1. We get the difference equation

xk = 2xk−1 + 2k − 1, x1 = 1.

This has the solution

xk = 2k−1

(
1 +

k∑
i=2

2i − 1

2i−1

)
= (k − 1)2k + 1

(Proposition 1.15). We set k = log2(n) then

C(n) = C(2log2(n)) = xlog2(n)
= (log2(n)− 1)n+ 1 = n log2(n)− (n− 1).

Because of log2(n) = ⌊log2(n)⌋ for n = 2k is

C(n) = n⌊log2(n)⌋ − (2⌊log2(n)⌋ − 1)

an integer solution (Lemma B.23).

16. Determine an element x of order k with Quickselect. Then perform a
partitioning step of quicksort with pivot element x. Split so that elements
≤ x are on the left of x and elements > x are on the right of x (analogous
to Algorithm 2.34). The k smallest elements are on the left of x.

c⃝H. Knebl 2020

20 Sorting and Searching

17. This version finds the first element among equals, Algorithm 2.28 finds
any among equals. The following holds true
a.

l ≤
⌊
l + r

2

⌋
≤ r.

b. Since ri+1 − li+1 < ri − li holds, while terminates with l = r.
c. After a decomposition, the larger part has

⌊
n−1
2 + 1

⌋
=
⌈
n
2

⌉
elements.

I(n) fulfills the recursion:

I(n) ≤ I
(⌈n

2

⌉)
+ 1, I(1) = 0.

With Proposition 1.28, it follows that I(n) ≤ ⌊log2(n)⌋+ 1.

Algorithms and Data Structures by H. Knebl

Solutions 21

3. Hashing

1. A mapping f is given by its value vector (f(0), . . . , f(n − 1)). Thus,
F(M,N) ∼= Nm and |F(M,N)| = |Nm| = nm. An injective mapping f
is given by its value vector (f(0), . . . , f(m − 1)), f(i) ̸= f(j) for i ̸= j.
The number of injective mappings is(n

m

)
·m! =

n!

(n−m)!

Thus, the percentage of injective mappings is

n!

(n−m)! · nm
· 100.

For n = m the percentage of injective mappings is n!
nn ·100 ≈

√
2πn
en ·100.

11

For n = 100 the percentage is ≈ 10−40. Injective mappings occur rarely.

2. We calculate the values for a 16-bit processor and 11-bit hash values.
For this we develop 16 digits of (0.618)d binary: (0.1001111000110101)b.
The hash values are:

k binary decimal
0 10011110001 1265
1 00111100011 483
2 01111000110 966
3 11110001101 1933
4 11100011010 1818
5 11000110101 1589
6 10001101010 1130
7 00011010100 212
8 00110101000 428
9 01101010000 848
10 11010100110 1696

3. Let (x1, y1), (x2, y2) ∈ Zp × Zp, (x1, y1) ̸= (x2, y2).
From ha = hã, it follows that ax + y = ãx + y for x, y ∈ Zp. Hence,
ax = ãx (y = 0) and a = ã (y = 0, x = 1). Thus, |H| = p.
From ax1 + y1 = ax2 + y2 follows a(x1 − x2) = y2 − y1 and for x1 ̸= x2

it follows that a = (y2 − y1)(x1 − x2)
−1, i.e, |{ha ∈ H | ha(x1, y1) =

ha(x2, y2)}| = 1.
For x1 = x2, it follows that y1 = y2, this contradicts the assumption
(x1, y1) ̸= (x2, y2), hence p(ha(x1, y1) = ha(x2, y2)) = 1/p.

11 Here we used Stirling’s formula n! ≈
√
2πn

(
n
e

)n
.

c⃝H. Knebl 2020

22 Hashing

4. Let Lin(Zk
p,Zl

p) be the set of linear mappings A : Zk
p −→ Zl

p. The linear

mappings are represented by l× k- matrices. Thus, Lin(Zk
p,Zl

p)
∼= M(l×

k,Zp) and |Lin(Zk
p,Zl

p)| = |M(l × k,Zp)| = pkl.

Let A ∈ M(l × k,Zp) and let x1, x2 ∈ Zk
p, x1 ̸= x2, with A(x1) = A(x2).

Then A(x1 − x2) = 0. Let y ∈ Zk
p \ {0}. We calculate the number of

matrices A ∈M(l× k,Zp) with A(y) = 0. Since (y1, . . . , yk) ̸= 0, there is
a yi ̸= 0. For the columns A1, . . . , Ak of A, we have Ai = − 1

yi

∑
k ̸=i ykAk.

It follows

|{A ∈M(l × k,Zp) | A(x1) = A(x2)}| = p(k−1)l

Altogether, it follows that the family Lin(Zk
p,Zl

p) is a universal family of
hash functions.

5. Statement: The elements from {j ·c mod m | 0 ≤ j ≤ m−1} are pairwise
distinct. Suppose j · c ≡ j̃ · c mod m =⇒ m divides (i− j) · c.
gcd(m, c) = 1 =⇒ m divides j − j̃, a contradiction, since |j − j̃| < m.

6. n = 10, 000, B = n/m.
1 + 1/2B = 2 =⇒ B = 2 =⇒ m = 5, 000.
E(kol) = n−m(1− p0), p0 = e−2 = 0.0006179.
E(kol)/n = 1− 1/B(1− p0) = 0.5676.
56.76 % of the records cause collisions.
Overflow area: 5676 places, primary area: 5,000 places.

7. We use the formula 1
B ln

(
1

1−B

)
for the average length of a probing se-

quence when searching for an element. For B = 0.8 we get two accesses
on average. With B = n

m we obtain l = 1250. We choose for m = 1259,
the smallest prime number > 1250.

8. Use a hash procedure with hash function h : {{0.1}k −→ t[0..m] to speed
up the search for matching substrings. In the table t indices are stored,
which point into the text buffer tb[i− w..i− 1] relative to the beginning
of the preview buffer pb[i..i + v − 1]. For example, use the first 3 char-
acters pb[1..3] as input for the hash function (k = 24). One step of the
compression consists of
a. Search the longest matching subsequence l with the starting points

defined by the entries in t, colliding with h(pb[1], pb[2], pb[3]).
b. Store the index for pb[1..3] in t.
c. Code l and move text and preview buffers.
d. Update all indexes in t, which is necessary due to moving text and

preview buffers.
For details see appendix B in [HanHarJoh98], which also contains an
implementation in C for compression and decompression.

9. a. Uniqueness: Use a hash procedure and check for collisions. For this
purpose n hash values have to be calculated. Let L = {l1, . . . , ln}.

Algorithms and Data Structures by H. Knebl

Solutions 23

Use a hash function h and successively calculate h(li), i = 1, . . . , n.
For h(li) = h(lj) compare li and lj .

b. Use a hash function h and calculate h(zi), i = 1, . . . , n. Then check
if h(s− zi), i = 1, . . . , n, collides with h(zj), j = 1, . . . , n. In case of
collisions check if s− zi = zj is valid.

10. The probability

pi := pij := p(nj = i) =

(|S|
m
i

)(
|S|− |S|

m
n−i

)
(

|S|
n

) .

indicates that i keys are mapped to a value j. To see this we compute,
number of positive cases:

Select in h−1(j) i elements. This has
(|S|

m
i

)
possibilities.

Select n− i elements from the remaining fibers. There are
(

|S|− |
m

n−i

)
pos-

sibilities for this. There are
(

|S|
n

)
possible cases.

The distribution p(nj = i) is the hypergeometric distribution with the

parameters
(
n,M = |S|

m , N = |S| − |S|
m

)
. We have E(nj) = nM

N = n
m−1

(Proposition A.24).

11. a. bm denotes the available memory.
b. β is proportional to B (β = bB).
The number of keys mapped to j is

nj = |{s ∈ S | H(s) = j}|, j = 0, . . . ,m− 1.

The number of values with i pre-images wi =
∑m−1

j=0 δnj ,i, i = 0, . . . , n.

E(wi) = mpi, pi =
(n
i

)(1

m

)i(
1− 1

m

)n−i

.

If i keys are mapped to a value, i− b keys lead to collisions. The number
of collisions is

kol =
n∑

i=b+1

(i− b)wi.

nj , wi, kol are random variables.
Proposition. Let H be a hash table with m blocks, block size b and load
factor β. In H are n elements saved.
The average number of collisions is

m

(
n

m
−

b∑
i=1

ipi − b

(
1−

b∑
i=0

pi

))
.

c⃝H. Knebl 2020

24 Hashing

Proof.

E(Kol) = E

(
n∑

i=b+1

(i− b)wi

)
=

n∑
i=b+1

(i− b)E(wi)

=

n∑
i=b+1

(i− b)mpi. = m

n∑
i=b+1

(i− b)pi.

= m

(
n∑

i=b+1

ipi − b

n∑
i=b+1

pi

)

= m

(
n

m
−

b∑
i=1

ipi − b

(
1−

b∑
i=0

pi

))
.

2

Corollary. Let H be a hash table with m blocks, block size b and load
factor β. In H are n elements stored. The percentage of inserted elements
causing collisions is

f(b, β) =
100

β

(
β −

b∑
i=1

ipi − b

(
1−

b∑
i=0

pi

))
.

Proof.

E(Kol)

n
=

m

n

(
n

m
−

b∑
i=1

ipi − b

(
1−

b∑
i=0

pi

))

=
1

β

(
β −

b∑
i=1

ipi − b

(
1−

b∑
i=0

pi

))
.

2

We now calculate values for f(b, β). For this we use pi ≈ β
i!e

−β .

β = 0.1 β = 0.5 β = 1 β = 1.5 β = 2 β = 2.5 β = 3
b = 1 4.8 21.3 36.8 48.2 56.8 63.3 68.2
b = 2 0.2 3.3 10.4 18.7 27.1 34.8 41.5
b = 3 0.0 0.4 2.3 6.0 10.9 16.5 22.3
b = 4 0.0 0.0 0.4 1.6 3.8 6.8 10.6
b = 5 0.0 0.0 0.1 0.4 1.1 2.5 4.4

Example. Storage space for 10,000 elements, number of elements 5,000:

b 1 2 3 4 5
m 10, 000 5, 000 3, 333 2, 500 2, 000
β 0.5 1 1.5 2.0 2.5
kol 1065 520 300 190 125
free blocks (in %) 60.7 36.8 22.3 13.5 8.2

Algorithms and Data Structures by H. Knebl

Solutions 25

12. Let ST and BT be stacks with the operations Push and Pop.
The following operations are executed:

at begin block: PushBT(topST);
at end block: topST ← PopBT;
to insert: entry.next← HT [H(entry.name)],

HT [H(entry.name)]← topST ,
PushST(entry),

to search: sequential search in ST ,
checking uniqueness of names:

sequential search in ST ,
the topmost element in BT
gives the termination condition.

This causes the following problem: The sequential search is not very effi-
cient. However, the efficiency can be improved by using hash methods.

Stack symbol tables and hash procedures. As before, let ST and
BT be stacks with the operations Push and Pop. To organize concate-
nated lists of symbol table entries, we extend the symbol table with a
column for indices. The hash table HT stores pointers (indices) to en-
tries in the symbol table. Collision resolution for identical hash values is
achieved through chaining. This is done using the index column of ST .
The following operations are executed:

at begin block: PushBT(topST);
at end block: delete all names of the block from the

hash organization, topST ← PopBT;
to insert: entry.next← HT [H(entry.name)],

HT [H(entry.name)]← topST ,
PushST(entry),

to search: search in ST using H;
checking uniqueness of names:

search in ST using H, the topmost element in BT
gives the termination condition.

c⃝H. Knebl 2020

26 Trees

4. Trees

1. We denote by L1 the pre-order list and by L2 the post-order list. The
root r is the first element in L1 and the last element in L2. Let x be the
second element in L1 and y be the second last element in L2.
For x ̸= y then
(1) x is left successor of the root. y is right successor of the root.
(2) All elements in L1, which lie between x and y belong to the left

subtree.
(3) All elements in L2, which lie between x and y belong to the right

subtree.
(4) Continue the procedure recursively with the subtrees with root x and

y.
For x = y the root r has only one successor x. We cannot decide whether
it is a left or right successor. Then
(1) The subtree L with root x contains all elements from L1 which are

located to the right of x.
(2) These are also the elements from L2, which lie to the left of x.
(3) Continue the procedure recursively with each of the alternatives.

..c.

a

.

h

.

f

.

b

.

j

.

d

.

e

. ..c.

a

.

h

.

f

.

b

..

j

.

d

.

e

2. With root 2 the following cases occur:

..2.

1

.

3

..

4

..2.

1

.

4

.

3

.

With root 1 the following cases occur:
..1..

2

..

3

..

4

..1..

2

..

4

.

3

.

..1..

3

.

2

.

4

Algorithms and Data Structures by H. Knebl

Solutions 27

..1..

4

.

3

.

2

.. ..1..

4

.

2

..

3

.

The cases root 3 and root 4 are symmetrical to root 2 and root 1. In total
there are 14 different arrangements for 24 different inputs.

3. The postfix notation is represented by the post-order output, the prefix
notation by the pre-order output and the infix notation is generated by
the in-order output. Parenthesis must be set into the in-order output. On
the recursive descent, an opening parenthesis is output after ∗, + and on
the way back a closing parenthesis after +,∗. .
Structure of an arithmetic expression:

(a+ b) ∗ c ∗ ((a+ b) ∗ c+ (a+ b+ e) ∗ (e+ f)).

..∗.

∗

.

+

.

a

.

b

.

c

.

+

.

∗

.

+

.

a

.

b

.

c

.

∗

.

+

.

+

.

a

.

b

.

e

.

+

.

e

.

f

Fig. 2.2: Syntax tree of an arithmetic expression.

4. a. If v has a left successor, then vv is located in the left subtree of v on
the far right. This node has no right successor.

b. In a binary tree and a given node v we denote by nv the node that oc-
curs in the in-order sequence immediately after v (if existing). Show:
If v has a right successor nv, then nv has no left successor.

5. We define for each subsequence s1, s2, . . . , sk, k ≥ 1, an interval Ik. We
set I1 = [−∞,∞] and

I2 =

{
[s1,∞], if s2 is right successor of s1,
[−∞, s1], if s2 is left successor of s1.

Let k ≥ 3 and Ik = [bk, ck] be defined on the basis of s1, s2, . . . , sk. If
sk+1 /∈ Ik, then the sequence is not possible. Otherwise, we set

c⃝H. Knebl 2020

28 Trees

Ik+1 =

 Ik, if sk and sk+1 are both left or right successors,
[sk, ck], if sk is left and sk+1 is right successor,
[bk, sk], if sk is right and sk+1 is left successor.

If s ∈ In−1, then the sequence is possible.

6. Either x is right or left successor of y. Since x is a leaf, x will be placed
immediately before y or after y when traversing in-order. Since in-order
traversal produces the sorted sequence, the statement follows.

7. We construct a binary search tree for {1, . . . , n} by the following rule:
Choose the middle element x as root. Continue the construction recur-
sively for all elements smaller than x and all elements larger than x.
The following holds for the height h(n) of the search tree

h(1) = 1, h(n) ≤ h

(⌈
n− 1

2

⌉)
+ 1 = h

(⌊n
2

⌋)
+ 1.

By Proposition 1.28 follows h(n) ≤ ⌊log2(n)⌋+ 1.

8. Insert the elements in the “order” of the layers. First the root, then the
elements of layer 1 from left to right and so on. The binary search tree
property creates the original tree. The AVL condition is fulfilled.

9. The result is a tree whose leaves are contained in at most two levels. After
2k − 1 elements are inserted, the lowest layer is fully occupied. For the
height h holds h = ⌊log2(n)⌋.

10. Let u be a node in T , u = u0, u1, . . . , un be a path connecting u with a
leaf and Tu the subtree of T with root u. By hbu we denote the number
of black edges in u0, u1, . . . , un and by nu we denote the number of inner
nodes of Tu. Note that hbu is independent of the choice of the leaf. We
show by induction on the height hu of u that

nu ≥ 2hbu − 1

holds. For hu = 0 u is a leaf and 2hbu − 1 = 20 − 1 = 0 and nu = 0. Let
hu ≥ 1. The node u has two successors v and w. nu = nv + nw + 1 and
hv, hw < hu. We have hbv, hbw ≥ hbu − 1. From this follows

nu = nv + nw + 1 ≥ 2hbu−1 − 1 + 2hbu−1 − 1 + 1 = 2hbu − 1.

This shows the assertion.
Since a red edge is followed by a black edge, for the root r and the height
h of T holds hbr ≥ h/2. It follows that

n ≥ 2hbr − 1 ≥ 2
h
2 − 1,

which is equivalent to h ≤ 2 log2(n+ 1).
Algorithms for insertion and deletion in red-black trees are discussed, for
example, in [CorLeiRivSte09, Chapter 13].

Algorithms and Data Structures by H. Knebl

Solutions 29

11. Algorithm 4.1 assumes that three consecutive Fibonacci numbers are
pre-calculated. This can be done with Algorithm 1.20. Alternatively, the
first κ Fibonacci numbers can be pre-calculated and stored in the array

fib[0..κ]. From fκ ≈ gk

√
5
≥ n, it follows that k ≈ logg(n

√
5) = O(log2(n)).

O(log2(n)) additions are necessary to initialize fib .
The Fibonacci tree FB6 below shows the search paths for all elements in
an array a[1..n], 8 ≤ n ≤ 12.

..8.

5

.

3

.

2

.

1

.

0

.

1

.

2

.

4

.

3

.

4

.

7

.

6

.

5

.

6

.

7

.

11

.

10

.

9

.

8

.

9

.

10

.

12

.

11

.

12

.

We assume that n = fk+1 − 1. Then we use the inner nodes of the Fi-
bonacci tree FBk. For an inner node v, both successors have the same
difference with v and this difference is a Fibonacci number. We find the
Fibonacci numbers in descending order on the far left of FBk.

We will derive the navigation using the following sketch.
Initialization: i = fk, g = fk−1 and h = fk−2.

h > 0 and a[i] > x :
i′ = i− h (left),
g′ = h,
h′ = g − h.

g > 1 and a[i] < x :
i′ = i+ h (right),
g′ = g − h,
h′ = h− g′.

c⃝H. Knebl 2020

30 Trees

..i = fk.

i′ = g = fk−1

.

g′ = fk−2

.

fk−3 = g′

...

fk−4 = h′

..

h′ = fk−3

..

h = fk−2

.

i′

.

i′ − h′

.

i′ + h′

.

fk−4

.

fk−2

.FBk

.

FBk−2 + fk

(g, h) = (fj , fj−1) are two consecutive Fibonacci numbers. If the distance
between predecessor v and successor w (in the tree) is equal to fj , then
the next distance is fj−1, if w is a left successor, and fj−2, if w is a right
successor.
So the next distance is non-existent for “left” and h = f0 = 0 and for
“right” and g = f2 = 1 (and h = 1 or h = 0).
In these cases the element to be searched for is not located in a.
If fk < n + 1 < fk+1 is true, the case i′ > n may occur. Then a step to
the left and no access to a will occur.

Let k+1 be the index of the smallest Fibonacci number for which fk+1 ≥
n+1 holds. When calling FibSearch, the array a[1..n], in which the search
is to be carried out, the element x to be searched for and the index k
must be passed.

Algorithms and Data Structures by H. Knebl

Solutions 31

Algorithm 4.1.

FibSearch(item a[1..n], x; index k)
1 int i← fk, g ← fk−1, h← fk−2

2 while true do
3 if i > n
4 then i← i− h, t← g, g ← h, h = t− h
5 else if a[i] < x
6 then if g = 1 then return − 1
7 i← i+ h, g ← g − h, h = h− g
8 else if a[i] > x
9 then if h = 0 then return − 1
10 i← i− h, t← g, g ← h, h = t− h
11 else if a[i] = x then return i

We divide an array of length fk − 1 into arrays of length fk−1 − 1, 1
and fk−2 − 1. We set up a recursive equation for comparisons with array
elements.

C(fk − 1) ≤ C(fk−1 − 1) + 1

We set n = fk− 1 and xk = C(fk− 1) and get xk = xk−1 +1 =
∑k

i=2 1 =

k − 1. n+ 1 = fk ≈ gk

√
5
.

Thus k ≈ logg(
√
5(n+ 1)) and

C(n) ≈ logg(
√
5(n+ 1))− 1 = O(log2(n)).

See also Proposition 4.14, which estimates the height of a balanced tree
with n nodes.

12. Since a treap is uniquely defined by the stored elements, the treap does
not depend on which insert and delete operations it was created by.

13. Let cn be the number of binary trees with n nodes. There is exactly one
binary tree with 0 nodes. Let B be a binary tree with n nodes n ≥ 0.
The left subtree of the root has j nodes, the right subtree has n− j − 1
nodes. Therefore, the following recursion results

c0 = 1,

cn =

n−1∑
j=0

cjcn−j−1.

We consider the generating function

G(z) =

∞∑
i=0

ciz
i =

∞∑
i=0

i−1∑
j=0

cjci−j−1z
i

= zG(z)2 − 1.

c⃝H. Knebl 2020

32 Trees

The equation x2 − 1
zx −

1
z has the solution x = 1/2z(1 −

√
1− 4z). We

develop 1/2z(1−
√
1− 4z) with the binomial series and get

G(z) =
1

2z
(1− 4

√
1− 4z) =

1

2z

(
1−

∞∑
n=0

(1
2

n

)
(−4z)n

)

= 2
∞∑

n=0

(1
2

n+ 1

)
(−4z)n =

∞∑
n=0

(
− 1

2

n

)
(−4z)n

n+ 1

=

∞∑
n=0

(
2n

n

)
zn

n+ 1
.

From this follows cn = 1
n+1

(
2n
n

)
.

14. There are pages with 4 and with 2 elements. Therefore, d ≥ 5 and⌊
d−1
2

⌋
≤ 2 holds. So d = 5 or d = 6 follows.

15. a. 3 ≤ d− 1,
⌊
d−1
2

⌋
≤ 1, hence d = 4.

b. Swap h with l, delete h:
Layer 0: m, layer 1: e, t and x, layer 2: b, f, l, r, u, v, w and y.
Delete l, delete b: Underflow in layer 2, merge:
Layer 0: m, layer 1: t and x, layer 2: e, f, r, u, v, w and y.
Underflow in layer 1, balance:
Layer 0: t, layer 1: m and x, layer 2: e, f, r, u, v, w and y.

16. It is easy to find a counterexample: Let d = 5.
a. Level 0: 11.50 and level 1: 2.3; 12.17; 52.53.
b. level 0: 17 and level 1: 2,3,11,12; 50,52,53.

17. We assign to the B-tree

its red-black tree.

Algorithms and Data Structures by H. Knebl

Solutions 33

..Q.

H

.

B

.

A

.

E

.

N

.

L

..

M

.

O

..

P

.

T

.

R

.

V

..

W

Let B be a B-tree and RB be the assigned red-black tree. An element in
a B-tree page is followed by B-tree edges. The edges following a red edge
in RB are black, thus, a red edge in a path is followed by a black edge.
Since the leaves in the B-tree are located on one level, all paths leading
from a node to a leaf have equal length. Therefore, for each node v ∈ RB

the number of black edges is the same for all paths that start in v and
end in a leaf.
Let R be a red-black tree. We assign to R the B-tree BR. Since the
successors of a red edge are black, at most three nodes are connected by
(two) red edges. We define a B-tree side by nodes connected by a red
edge. The black edges become edges between the B-tree sides. Since in a
red-black tree all paths from the root to a leaf have the same number of
black edges, all leaves in the assigned B-tree are on the same level. The
construction results in a B-tree of order 4.

18. a. C1 is not uniquely decodable, because bbaa||c||dea||bbd =
bb||aacde||abbd.

b. C2 is uniquely decodable because the reverse code {c, bb, dbb, aed,
ebba, daab, aabb, edcaa} is prefix-free.

19. Let Y = {y1, . . . , yn}. The code tree for Y ∗ = ∪∞i=0Y
i has ni nodes in

the i-th level. In the i-th level the nk nodes, which originate from the
k-th level, k = 1, . . . , i − 1, have nkn

i−k successors. For a prefix code C
these nodes cannot be included in the code tree of C. The nodes of code
words of length i are a subset of the remaining ni−n1n

i−1− . . .−ni−1n
nodes. Therefore,

c⃝H. Knebl 2020

34 Trees

n1 ≤ n

n2 ≤ n2 − n1n

n3 ≤ n3 − n1n
2 − n2n

...

ni ≤ ni − n1n
i−1 − . . .− ni−1n

...

nl ≤ nl − n1n
l−1 − . . .− nl−1n

20. a. The given code is compact because it can be generated with Algo-
rithm 4.43.

b. The result of Algorithm 4.43 is not unique. By selecting two nodes
from the set of the nodes with the lowest probability, you can even
produce codes with different word lengths.
C = {00,010,011,100,101,110,111} is also a Huffman code. For both
codes the average code word length is 2 5

7 .

21. If you encode over an alphabet with q symbols, you can encode q messages
with one symbol. For a code word, q extensions can be created by adding a
symbol to it. Therefore, in a step the q nodes with the lowest probabilities
are summarized. In order for the algorithm to terminate with q messages,
it may be necessary to accomplish X with messages with probability 0,
so that |X| = q − k(q − 1) is valid.

22. We have H(X) = l(C). By the Noiseless Coding Theorem of Shannon
(Proposition 4.39), it follows that the code is compact.

23. From
∑k

i=1 pi = 1, it follows that pi = 1
2i for i = 1, . . . , k − 1 and

pk = 1
2k−1 . Let

c1 = 0, c2 = 10, c3 = 110, . . . , ck−1 = 1 . . . 1︸ ︷︷ ︸
k−2

0, ck = 1 . . . 1︸ ︷︷ ︸
k−1

.

Then

l(C) =

k−1∑
i=1

i

2i
+

k − 1

2k−1
= 2− 1

2k−2
.

From H(X) = l(C), it follows by the Noiseless Coding Theorem of Shan-
non (Proposition 4.39) that the code is compact.

24. Each compact code is a Huffman code. Therefore, we use Algorithm 4.43
for constructing a compact code. The sum of the word lengths

∑n
i=1 li

is the greatest if in each construction step a code word which has maxi-
mum length is extended by 0 or 1. This results in the code word lengths
1, 2, 3, . . . , n− 1, n− 1. For these code word lengths

Algorithms and Data Structures by H. Knebl

Solutions 35

n∑
i=1

li =

n−1∑
i=1

i+ n− 1 =
(n− 1)(n+ 2)

2
=

1

2
(n2 + n− 2).

(Appendix B, page 330).

25. a. The code for message acfg is 1709.
b. The number 1688 encodes the message acfaeb.

26. Let X = {x1, . . . , x2l}, p(xi) = 1/2l.

I(xi1 . . . xin) =

[
j

2nl
,
j + 1

2nl

[
, j = 0, . . . , 2nl − 1.

Encode j with nl bits: jnl−1 . . . jk . . . j0, jnl−1 = . . . = jk = 0, jk−1 = 1
and

xi1 . . . xin → jk−1 . . . j0.

27. p(a) = 1− 1/2k, p(b) = 1/2k. We have I(b) = [. 1 . . . 1︸ ︷︷ ︸
k

, 1[.

By induction, it follows that I(bn) = [. 1 . . . 1︸ ︷︷ ︸
nk

, 1[:

We show the step from n to n+ 1:

I(bn+1) = . 1 . . . 1︸ ︷︷ ︸
nk

+. 0 . . . 0︸ ︷︷ ︸
nk

1[. 1 . . . 1︸ ︷︷ ︸
k

, 1[

= [. 1 . . . 1︸ ︷︷ ︸
(n+1)k

, 1[.

I(bna) = . 1 . . . 1︸ ︷︷ ︸
nk

+. 0 . . . 0︸ ︷︷ ︸
nk

1[0, . 1 . . . 1︸ ︷︷ ︸
k

[

= [. 1 . . . 1︸ ︷︷ ︸
nk

, . 1 . . . 1︸ ︷︷ ︸
(n+1)k

[

Encode
bna→ . 1 . . . 1︸ ︷︷ ︸

nk

.

28. For example r = 5 and

abcdefabcdefabcdefabcdef . . . ∈ {a, b, c, d, e, f},

require that each character must be encoded as a single character. There
is maximum expansion.

c⃝H. Knebl 2020

36 Graphs

5. Graphs

1. If G has an Euler cycle, G is connected. An Euler cycle, which enters a
node, must also exit the node. Therefore, the degree of each node is even.
To show the opposite direction we consider a path

P : v0, . . . , vk

of maximum length which does not contain an edge multiple times. Since
this is a path of maximum length, all edges that are incidences to vk are on
that path. Since with each occurrence of vk inside P two incident edges
are connected, it follows from v0 ̸= vk that deg(vk) is odd. Therefore,
v0 = vk holds. We show that all edges of G occur in P .
Assume that there is an edge e that is not on P . Then, since G is con-
nected, there is an edge e, which is incident to a node of P and is not on
P . Let e = {vi, u}, 0 ≤ i ≤ k. Then

u, vi, vi+1, . . . , vk−1, vk = v0, v1 . . . , vi−1, vi

is a path that does not contain an edge multiple times and has the length
k + 1. A contradiction to the choice of P .

2. We prove the statement by induction on the number of edges E. For
|E| = 0 we have |V | = 1 and |F | = 1. The formula is correct. Let |E| ≥ 1.
If the graph is a tree, then |E| = |V | − 1 and |F | = 1. The formula is
correct.
Now let Z be a cycle and e an edge on Z. Let G′ = G \ {e} be the graph,
which is created from G by removing the edge e. Then |E′| = |E| − 1.
Since there is a different area on each side of e, which merge when e is
removed, thus we have |F ′| = |F | − 1. By the induction hypothesis, the
following holds for G′:

|V ′| − |E′|+ |F ′| = 2,

hence
|V | − |E|+ |F | = |V ′| − (|E′|+ 1) + (|F ′|+ 1) = 2.

3. Let G = (V,E) be a graph, V = {1, 2, . . . , n} and let col = {1, 2, . . . , n}
be the color numbers of pairwise distinct colors.

Algorithms and Data Structures by H. Knebl

Solutions 37

Algorithm 5.1.

col[1..n]; node adl[1..n]

colourNodes()
1 node no; set availableCol
2 col[1]← 1
3 for k ← 2 to n do
4 col[k]← 0
5 for k ← 2 to n do
6 availableCol← {1, . . . , n}
7 no← adl[k]
8 while no ̸= null do
9 availableCol← availableCol \ {col[no.v]}
10 no← no.next
11 col[k]← min availableCol

We color the nodes one after the other. In each step, the colors used for
the neighbors of the node k are excluded. l = min avalableCol is greatest
if these are the colors with the color numbers 1, . . . , deg(k). Therefore,
l ≤ deg(k) + 1 ≤ ∆ + 1, k = 1, . . . , n holds. For a complete graph, the
barrier is accepted. The running time is of the order O(n+m).

4. Let m be the number of edges of G = (V,E). Then∑
v∈V

deg(v) = 2m, thus,
∑

v∈V,deg(v) is odd

deg(v)

is even. Since the sum of an odd number of odd summands is odd, the
number of odd summands is even.

5. Let [x] = [x̃] and [y] = [ỹ] be given. 21 divides x− x̃ and ỹ−y. So 21 also
divides x− x̃+ ỹ−y = x−y− (x̃− ỹ). Thus, 7 also divides x−y− (x̃− ỹ).
Therefore it holds: 7 divides x− y if and only if 7 divides x̃− ỹ.Thus, the
definition does not depend on the choice of the representative.
The equivalence classes are the strongly connected components.

6. a. We prove by induction on m := |E|.
(1) Induction basis: m = 0 =⇒ n = 1 (since G is connected). There-
fore, the formula is true. (2) “< m =⇒ m”: We remove an edge in G.
Either G remains connected. In that case, according to the induction
prerequisite m − 1 ≥ n − 1 holds, so m ≥ n − 1 also holds. In the
other case the graph breaks down into two componentsG1 = (V1, E1),
G2 = (V2, E2). According to induction hypothesis:
|E1| ≥ |V1| − 1 and |E2| ≥ |V2| − 1 =⇒|E| = |E1| + |E2| + 1 ≥
|V1|+ |V2| − 1.

b. We prove by induction on n = |V |.
(1) Induction basis: n = 1 =⇒G connected. Therefore, the statement
is correct.

c⃝H. Knebl 2020

38 Graphs

(2) n =⇒ n+ 1: Let n ≥ 2 and lets assume |E| ≥
(
n
2

)
+ 1. We show

that G is connected. If the graph is complete, it is also connected.
If the graph is not complete, there is a node v with less than n − 1
incident edges. We remove v and all incident edges of v in G and get
G′ = (V ′, E′). Then

|E′| ≥ |E| − (n− 1) ≥
(n
2

)
+ 1− (n− 1) ≥

(
n− 1

2

)
+ 1.

According to induction hypothesis, G′ is connected. Between the
nodes of V \ {v} there are at most

(
n−1
2

)
edges. Therefore, the re-

maining edge has one endpoint in E′ and the other endpoint is v.
Thus, G is connected.

7. a⇐⇒b: If G is a tree, G is acyclic and has |V |−1 edges (see Proposition
5.7).
Let G be acyclic with |V | − 1 edges. Suppose G is not connected. Let
G1, . . . , Gr, r ≥ 2, the connected components of G. By adding r−1 edges
G becomes connected and stays acyclic. G is a tree with |V |−1+r−1 >
|V | − 1 edges, a contradiction (see Proposition 5.7).
a ⇐⇒c: Let G = (V,E) be a tree (especially G is connected). Let e =
{v, w} an additional edge. In G there is a path P from v to w. Let
us extend P by {w, v} so we get a cycle. If, for the opposite direction
v, w ∈ V are given. If we get a cycle by adding the edge {w, v}, then
there must have been a path from v to w. Thus, G is connected.
a ⇐⇒d: Let G = (V,E) be a graph and e = {v, w} ∈ E. For G holds,
G \ {e} = (V,E \ {e}) decomposes into at most two components. G \ {e}
is connected if and only if there are cycles in G. G \ {e} decomposes into
at least two components if G is acyclic. So the statement in point d holds
for a tree. If after removing e for all edges e, a graph decomposes into
two components, the graph is acyclic. Thus, G is a tree.
a ⇐⇒e.: G is connected if and only if there is at least one path between
every two nodes. G is acyclic if and only if there is at most one path
between two nodes.

8. Let v ∈ V . Either there are three nodes adjacent to v or there are three
nodes, who are not adjacent to v.
Let us look at the first case. Either there are two nodes among the three,
which are mutually adjacent, then these two form a group with v of three
nodes and each two nodes from this group are adjacent. Or two nodes of
each triplet are not adjacent. Then this is a triplet and two nodes of this
group are not adjacent.
The second case - there are three nodes, which are not adjacent to v -
can be treated with an analog argumentation.

9. Suppose the statement is not correct. We consider a graph G with n
nodes with a maximum number of edges for which the statement does
not hold, i.e., for non-adjacent nodes k and l holds

Algorithms and Data Structures by H. Knebl

Solutions 39

(∗) deg(k) + deg(l) ≥ n

but G has no Hamilton circuit.
Let G′ = G∪{k, l}. In G′ the condition (∗) holds and for G′ the statement
is correct. Thus, there is a cycle Z in G′, which contains each node exactly
once. This cycle must contain the edge {k, l}. Let P be the path that we
get, when we remove the edge {k, l} in Z.

P : k = v1, . . . , vn = l.

We will immediately show that for each node vi, i = 2, . . . , n, which
is adjacent to k, vi−1 is not adjacent to l. From this condition follows
deg(l) ≤ n− 1− deg(k), i.e. h. deg(k) + deg(l) ≤ n− 1, a contradiction
to the condition deg(k) + deg(l) ≥ n. The statement of the exercise is
therefore correct.
We now show the above condition. Let us assume that there is an i with
vi being adjacent to k and vi−1 being adjacent to l.

..k = v1. v2.. vi−1. vi.. vn−1. vn = l.......

Then
v1, vi, . . . , vn, vi−1, vi−2, . . . , v1

is a cycle in G, which contains each node of G exactly once, a contradic-
tion.

10. The algorithm sorts the intervals by the starting points and uses an
additional list of active nodes (intervals). The list of active nodes is sorted
by endpoints.
1. Sort the list V of intervals by the starting points.
2. Process the sorted list V . Each step consists of: (1) Add the node I
to the list of active nodes. (2) Remove all nodes whose end points are
before the starting point of I from the list of active nodes. (3) All nodes
remaining in the list of active nodes are adjacent to I.

11. The problem can be solved by searching for the shortest path between
two nodes in a graph. Thus, we model the situation with a graph. A
node is given by a subset of {m,k,w,z} (m = man, k = cabbage, w =
wolf, z = goat) consisting of the members which are on this side of the
river. First all members of {m,k,w,z} are located on this side of this river.
Each departure or arrival of the boat defines a new subset. Permissible
subsets are those subsets, that do not lead to a catastrophe (goat eats
cabbage head, wolf eats goat). Between permissible subsets z1 and z2 an
edge is drawn if a transition from z1 to z2 by departure or arrival of the

c⃝H. Knebl 2020

40 Graphs

boat is possible. A path is searched that connects {m,k,w,z} and {}. A
shortest way can be found with breadth-first search. A solution can be
simply found (without graphs).
a. The man goes over with the goat (this is the only possibility).
b. He rows back alone.
c. The man crosses over with the wolf.
d. He rows back with the goat.
e. The man crosses over with the head of cabbage.
f. He rows back alone.
g. The man crosses over with the goat.

12. We replace the queue in Algorithm 5.11 with a stack. The visit order does
not always completely match the visit order of the recursive version.

Algorithm 5.2.

DepthFirstSearch()
1 vertex k, int nr
2 for k ← 1 to p do
3 where[k]← 0; parent[k]← 0
4 nr ← 1
5 for k ← 1 to p do
6 if where[k] = 0
7 then Visit(k);nr ← nr + 1

Visit(vertex k)
1 nodemo;no = adl[k]
2 if no ̸= null
3 then Push(k, no);where[k]← −1
4 repeat
5 (k, no) = Top()
6 while where[no.v] ̸= 0 and no ̸= null do
7 no← no.next
8 (k,mo) = Pop()
9 if no ̸= null
10 then parent[no.v]← k; Push(k, no)
11 mo = adl[no.v]
12 if mo ̸= null
13 then Push(no.v,mo);where[no.v]← −1
14 else where[k]← nr
15 until QueueEmty

13. For a graph, BFS only produces tree edges and cross edges (no backward
and no forward edges). A possible backward or forward edge would mean
that a node of a lower level is adjacent to a higher level (height difference
at least 2). In this case, however, the node of the lower level appears as
an immediate successor of the node of the higher level.

Algorithms and Data Structures by H. Knebl

Solutions 41

In a graph, DFS does not produce cross edges. A possible cross edge in-
serts one of the two end nodes of the edge as successor of the other. Edges
between predecessor and successor in the DFS tree are both forward and
backward edges.
In a directed graph, BFS produces both cross and back edges (no forward
edges) in addition to tree edges. A possible forward edge would mean that
a node of a lower level is adjacent to a higher level (height difference at
least 2). In this case, however, the node of the lower level appears as an
immediate successor of the node of the higher level.
In a directed graph, DFS produces all kinds of edges.

14. In the arrangements of (1) and (3) G comes before C, therefore they are
not topological sorted.
The arrangement (2) can be created by the calls Visit(H), Visit(C),
Visit(J) and Visit(A). Thus, it is a topological sorting.
If vi1 , . . . , vin is a topological sorting, then the calls of Visit with the pa-
rameters in the order vin , . . . , vi1 result in in the given order, the original
sort order.

15. In a topological sorting, a node is at the first position. No edge goes into
this node. This is the only node with this property if and only if all other
nodes can be reached from it.

16. Suppose that in Gred there are mutually accessible nodes Vi and Vj . Then
there would be v1, v2 ∈ Vi and w1, w2 ∈ Vj and edges (v1, w1), (w2, v2) in
G. But then v1 and w1 would also be mutually accessible. A contradiction.

17. a. We prove the statement by induction on r:
For r = 1 the statement follows from the definition of the adjacency
matrix. We now show the step from r to r+1. A path of length r+1
from i to j consists of a path of length r from i to k and an edge
(k, j). According to the induction hypothesis, Ar[i, k] is the number
of paths of length r from i to k. Therefore,

∑n
k=1 A

r[i, k]A[k, j] is the
number of paths of length r + 1 and

n∑
k=1

Ar[i, k]A[k, j] = Ar+1[i, j]

according to the definition of the die matrix product.
b. We consider A as adjacency matrix of a directed graph. By depth-

first search a directed graph can be tested for cycles (Proposition
5.15). The running time is in the order O(n+m).

18. a. The graph of the base relations:

c⃝H. Knebl 2020

42 Graphs

..a.b .

c

. e.

d

. f......

Fig. 2.3: Base relations of an arrangement.

b. Due to transitivity, a cycle n1 < n2 < . . . < n1 implies n1 < n1, a
contradiction. Thus, the graph is acyclic. Each node forms a strongly
connected component.

c. We obtain all elements b ∈ M with b > a by depth-first search in G
with starting point a and all elements b ∈ M with b < a by depth-
first search in rev(G), the reverse graph of G, with starting point
a.

19. a. The articulation points of the following graph
..A. B.

C

.

D

.

E

.

F

.

G

. H. I.

J

.

K

.

L

.

M

...............

are the nodes A, F, H, G, J.
A graph with one articulation point has at least three nodes.

b. Let v be an articulation point in G. Then G \ {v} breaks down into
at least two connected components. If u is selected in one component
and w in the other, then all paths from u to w in G pass through v.
Conversely, if there are nodes u and w in G, so that all paths from u
to w in G pass through v, then the node u is no longer reachable from
w after we remove v. G \ {v} has at least two connected components.

c. Since no cross edges occur in the DFS tree of G, the root is an
articulation point if and only if it has two successors.

d. If v is an articulation point, G \ {v} is divided into at least two
connected components. Thus, there is a son v′ of v and for all nodes
u in T accessible from v′, there is no backward edge (u,w) to a
predecessor w of v. Vice versa, if there is a son v′ of v and for all
nodes u in T reachable from v′ there is no backward edge (u,w) to
a predecessor w of v, then G is not connected without v. i.e., v is an
articulation point.

e. If v is an articulation point and v′ is a son of v and for all nodes u in
T reachable from v′ there is no backward edge (u,w) to a predecessor
w of v, then it follows that low(v′) ≥ tb(v). If there is a son v′ of

Algorithms and Data Structures by H. Knebl

Solutions 43

v with low(v′) ≥ tb(v), then there can be no backward edge from a
node reachable from v′ to a predecessor of v. Altogether, the following
holds: v is an articulation point if and only if there is a son v′ of v with
low(v′) ≥ tb(v). We formulate the calculation of low(v) recursively:

low(v) = min({tb(v)} ∪ {tb(w)|(v, w) ∈ R}
∪{low(v′)|v′ is son of v}).

Therefore, the condition low(v′) ≥ tb(v) can be checked with depth-
first search, analogously to Tarjan’s algorithm for calculating the
strongly connected components. For this purpose, Algorithm 5.19
can be easily adapted.

20. Let u, v ∈ V . If there is a circle that contains u and v, there are two
disjoint paths from u to v. If we remove w /∈ {u, v}, u and v remain
mutually accessible.
We prove the opposite direction by induction on d(u, v).
Induction Statement: For each node v there is a circle with start and end
node u on which v lies.
Let u, v ∈ V . We run DFS with the start node u. There is a path P from
u to v in the DFS tree T of G.
Induction start d(u, v) = 1: v is not an articulation point. Since there are
no cross edges in T , there is a backward edge from a successor of v to
node u. With the edge u, v we obtain a cycle in G on which v is located.
For the induction step, assume d(u, v) ≥ 2: Let w be the predecessor
of v in T . Since d(u,w) < d(u, v), there is a cycle Z with start node
u containing w. Since w is not an articulation point, there is a path
u = v0, . . . , vl = v from u to v in G \ {w}. Let i be the largest index with
vi ∈ Z. We get a cycle Z ′ with start node u: We follow Z from u to vi,
then vi+1, . . . , vl = v, w then Z from w to u. Z ′ is a cycle with start and
end node u and contains v.

c⃝H. Knebl 2020

44 Weighted Graphs

6. Weighted Graphs

1. a. Induction basis: A(1, 0) = A(0, 1) = 2.
Induction hypothesis: A(1, n) = n+ 2.
Induction statement: A(1, n+ 1) = (n+ 1) + 2.
Induction step: A(1, n+1) = A(0, A(1, n)) = A(0, n+2) = (n+1)+2.

b. Induction basis: A(2, 0) = A(1, 1) = 1 + 2 = 3.
Induction hypothesis: A(2, n) = 2n+ 3.
Induction statement: A(2, n+ 1) = 2(n+ 1) + 3.
Induction step:
A(2, n+1) = A(1, A(2, n)) = A(1, 2n+3) = 2n+3+2 = 2(n+1)+3.

c. Induction basis: A(3, 0) = A(2, 1) = 2 + 3 = 5.
Induction hypothesis: A(3, n) = 2n+3 − 3.
Induction statement: A(3, n+ 1) = 2(n+1)+3 − 3.
Induction step:
A(3, n + 1) = A(2, A(3, n)) = A(2, 2n+3 − 3) = 2 · (2n+3 − 3) + 3 =
2(n+1)+3 − 3.

d. Induction basis:

A(4, 0) = A(3, 1) = 24 − 3 = 13.

22
2
. .

.
2

︸ ︷︷ ︸
n+3 times

−3 = 22
2

− 3 = 16− 3 = 13.

Induction hypothesis:

A(4, n) = 22
2
. .

.
2

︸ ︷︷ ︸
n+3 times

−3

Induction statement:

A(4, n+ 1) 22
2
. .

.
2

︸ ︷︷ ︸
n+4 times

−3.

Induction step:

A(4, n+ 1) = A(3, A(4, n)) = A(3, 22
2
. .

.
2

︸ ︷︷ ︸
n+3 times

−3)

= 2

22
2
. .

.
2

︸ ︷︷ ︸
n+3 times

−3+3

− 3 = 22
2
. .

.
2

︸ ︷︷ ︸
n+4 times

−3.

Algorithms and Data Structures by H. Knebl

Solutions 45

2. a. The axiom “positive definite” and the triangle inequality are violated.
b. Dijkstra’s algorithm returns the path 4 - 3 - 1 - 2 of length 4. The

path 4 - 5 - 2 has length 3. Dijkstra’s algorithm therefore does not
give a correct result with negative weights.

c. Kruskal’s algorithm yields a minimum spanning tree of weight 2 with
the edges (1,2), (1,3), (2,5) and (3,4).
In general, this is true , because the proof of correctness is also valid
if edges with negative weight are present. The Proof uses only com-
parison arguments, which are also valid for negative edges.

3. We assume that node 1 is the start node and node n is the end node. No
edge enters the start node and no edge exits the end node. Further we
assume that n is accessible from 1.
The following algorithm calculates a longest path from 1 to n. We use
the arrays succ[1..n] and len[1..n], which are initialized with 0. The array
succ[k] stores the successor of a node on a longest path from k to n and
len[k] stores the length of a longest path from k to n.

Algorithm 6.1.

vertex parent[1..n], succ[1..n]; node adl[1..n]; boolean visited[1..n]

Visit(vertex k)
1 node no
2 visited[k]← true
3 no← adl[k]
4 while no ̸= null do
5 if visited[no.v] = false
6 then parent[no.v]← k; Visit(no.v)
7 if len[no.v] + no.w > len[k]
8 then len[k]← len[no.v] + no.w; succ[k] = no.v
9 no← no.next

After termination of the call Visit(1), len[1] contains the length of a
critical path and it can be displayed with the array succ.

4. The problem of calculating the distances from a node s to all nodes in
G can be solved by depth-first search in time O(n + m) for an acyclic
graph.
We start the depth-first search in s and create the DFS tree. In each node
k we record the distance between s and k in the DFS tree. If k is the
end node of a cross or forward edge, we note the new distance of s for k,
which results from this. Since G is acyclic, no backward edges occur.
We again apply depth-first search in the DFS tree and calculate the
distances including the distances which originate from cross and forward
edges. In the DFS tree, depth-first search is performed with the running
time O(n). Altogether, we get the running time O(n+m).

c⃝H. Knebl 2020

46 Weighted Graphs

5. If all edges have different weights, then the minimum spanning tree and
the result of Kruskal’s algorithm are unique.
If edges have the same weight, then the degree of freedom of Kruskal’s
algorithm results from the choice of the order of edges of equal weight. We
sort the edge list E from G ascending by weight. Then we put the edges
of the given minimum spanning tree T in each group of edges of equal
weight at the first position of the group. If the edges are processed in this
order, the edges from T will not lead to any cycles. They are included in
the minimum spanning tree constructed by Kruskal’s algorithm.

6. The data structure priority queue generalizes queue and stack. When
assigning ascending priorities the priority queue simulates a queue and
when assigning descending priorities a stack.

7. a. By adding an edge e to T a cycle Z is created. We determine the
next common ancestor of the end nodes of e and by doing this Z (in
the time O(|VT |) (Proposition 6.15)). Alternatively, Z can also be
determined by depth-first search (also in the time O(|VT |).
We remove the edge of maximum weight e′ from T ∪ {e}. The tree
(T ∪ e) \ {e′} is a minimum spanning tree of G ∪ {e}.

b. First add to G and to the MST T the node with the edge of the
least weight. We denote the result with G′ and T ′. T ′ is a minimal
spanning tree for G′. We add the remaining edges using the method
from point a.

8. Let e be the edge of G, whose weight is changed by x. We distinguish:
a. The edge e is a tree edge.

i. x < 0. The change has no effect on T . We position in Kruskal’s
algorithm in the sorted sequence of edges, the edge e as the first
edge among those with the same weight. Kruskal’s algorithm
applied to the new sorting order returns T .

ii. x > 0. If there is an edge e′ /∈ T with w(e) ≤ w(e′) < w(e) + x
so that by adding {e′} to T \ {e} is acyclic, T is no longer the
MST after the weight change.

b. The edge e is not a tree edge. T is a minimum spanning tree of
G′ = G\{e}. With Exercise 7. a we can now determine the minimum
spanning tree of G = G′ ∪ {e}.

9. The probability that the edge (u, v) will not fail is q(u,v) = 1 − p(u, v).
The probability that a connection v0, . . . , vn from v0 to vn will not fail is∏n

i=1 q(vi−1,vi).

log(

n∏
i=1

q(vi−1,vi)) =

n∑
i=1

log(q(vi−1,vi)) =: p.

p is maximum if and only if −p is minimum. We weight an edge (u, v) with
− log(q(u,v))(> 0). Then a path that connects two nodes has maximum
probability that a connection along the path will not fail if the path

Algorithms and Data Structures by H. Knebl

Solutions 47

has minimum length in a weighted graph, i.e., is equal to the distance
between two nodes in a weighted graph. We calculate the distance using
Dijkstra’s algorithm.

10. We model the problem with a state graph. The nodes are defined by the
people who still have to cross the river and by the position of the torch.
For example, {P1, P2, P3, P4, F} is the start state and {F} is the end
state.
For example, if P1 and P2 cross the bridge, an edge from {P1, P2, P3, P4, F}
to {P3, P4, F} is to be drawn with weight 10. If P1 runs back, a transition
to {P1, P3, P4, F} is added.
The problem can be solved with Dijkstra’s algorithm. The shortest
path: {P1, P2, P3, P4, F} → {P3, P4, F} → {P2, P3, P4, F} → {P4, F} →
{P1, P4, F} → {F}.

11. a. r(G) = mini=1,...,n e[i] ≤ maxi=1,...,n e[i] = d(G). Let i and j be
nodes with d(i, j) = d(G) and k a center. Then d(i, j) ≤ d(i, k) +
d(k, j) ≤ maxi=1,...,n d(i, k) + maxj=1,...,n d(k, j) = e(k) + e(k) =
2r(G).

b. i. Calculate the distance matrix A[1..n, 1..n] for G with the algo-
rithm by Floyd (Algorithm 6.57).

ii. Calculate the arrays e[1..n], r(G) and d(G):

e[i] = max
j=1,...,n

d(i, j), r(G) = min
i=1,...,n

e[i] and d(G) = max
i=1,...,n

e[i]

and all i with e[i] = r(G).
c. Calculate in each step the eccentricity for a node with the algorithm

of Dijkstra (Section 6.2). Calculate the minimum m of eccentrici-
ties already calculated. In the next node Dijkstra’s algorithm can be
aborted as soon as a distance > m is found.

12. a. Start with a complete weighted graph G with the cities as nodes and
the distances as weights.

b. Calculate a minimal spanning tree T for G.
c. Calculate the distance matrix A for T and the array d[1..n], defined

by d[i] =
∑

j A[j, i].
d. Determine the minima in d (centers). These fulfill the condition for

point c.

13. Let d(v) be the distance between v and the root r in T . If for all u ∈ V

d(u) + g(u, v) ≥ d(v) for v ∈ U(u)

holds, every path in T is also a shortest path in G.
Assuming there is a node w and a path s = v0, . . . , vl = w in G
with

∑l
i=1 g(vi − 1, vi) < d(w). Let j be the smallest index with∑j

i=1 g(vi−1, vi) < d(vj). The edge (vj−1, vj) is not a tree edge. For
u = vj−1 and v = vj , we have d(u) + g(u, v) < d(v), a contradiction.

c⃝H. Knebl 2020

48 Weighted Graphs

The condition can be tested by traversing T . In each node u, deg(u) com-
parisons are necessary. Altogether there are

∑
u∈V deg(u) = 2m compar-

isons.

14. Let GT = (VT , ET) be the transitive closure of G. The following condi-
tions are equivalent:
a. b is satisfiable.
b. For all nodes v, it holds that (v, v) /∈ ET or (v, v) /∈ ET .
a. =⇒b.: Assuming there is a node v with (v, v) ∈ ET and (v, v) ∈
ET . Then follows v =⇒ v and v =⇒ v. For a satisfying assignment for
b, assume v = 0 (without restriction). Then v = 1 and 1 =⇒ 0 is a
contradiction.
In general, the following applies : (v, w) ∈ ET if and only if (w, v) ∈ ET .
b. =⇒a.: We iteratively define a satisfying assignment of the variables
x1, . . . , xn. Let v be a node for which no assignment is defined and
let (v, v) /∈ ET (without restriction of the generality, otherwise consider
(v, v)), i.e., in G there is no path from v to v. Let Zv be the set of nodes
in G that can be reached from v. For w ∈ Zv, we have w /∈ Zv. Assuming
that w ∈ Zv and w ∈ Zv, then (w, v) ∈ ET implies (v, v) ∈ ET , a contra-
diction. For w ∈ Zv, we set w = 1 and w = 0. We repeat the construction
with a node for which no assignment is defined until all nodes have an
assignment. This assignment is a satisfying assignment for b, because we
set the assignment to 1 in each step for all nodes that are accessible from
w (the implication 1 =⇒ 0 cannot occur). To decide whether b is satis-
fying, we have to check whether v and v are not mutually reachable for
all v. v and v are mutually reachable if and only if they are in the same
strongly connected component.
The strongly connected components can be calculated for a directed
graph with n nodes and m edges using depth search in the time O(n+m)
(see Section 5.6).
An alternative solution can be obtained by calculating the transitive clo-
sure GT of G and checking whether for all nodes v either (v, v) /∈ ET or
(v, v) /∈ ET . If this is the case, b can be fulfilled.

15. The calculated augmenting path is S - H - J - F - B - F. Its augmentation
is 5. After the flow increase, only D and H can be reached in the residual
graph from S. The maximum total flow is 70 and an section of minimum
capacity is {S,D,H}.

16. Let p1, . . . , pn be the processes that are fixed with P and q1, . . . , qm, the
processes that are fixed with Q. The processes still to be assigned are des-
ignated by pq1, . . . , pql. We use a weighted graph for our solution. The
nodes are P , Q, p1, . . . , pn, q1, . . . , qm and pq1, . . . , pql. We define edges
(P, p1), . . . , (P, pn), (Q, q1), . . . , (Q, qm) with the capacity ∞. The capac-
ity of the edges between the processes is given by the communication
effort between the processes.

Algorithms and Data Structures by H. Knebl

Solutions 49

The distribution of the processes can now be done by calculating a cut
of minimum capacity. This in turn can be traced back to the calculation
of a maximum flow and subsequent breadth-first search in the residual
graph.

17. We reduce the problem to the flow problem with one source S and one
sink T .
We extend the graph by a source S, a sink T and edges (S,Si,ci), i =
1, . . . , n, and (Ti,T,di), i = 1, . . . ,m. We set ci equal to the sum of the
capacities of the edges, which have Si as start node and di equal to the
sum of the capacities of the edges, which end in Ti.
Then we apply the algorithm of Ford-Fulkerson in the variant of Edmonds-
Karp.

..S1

.

S2

.

S

.

S3

. N1

.

M1

.

L1

. N2

.

M2

.

L2

. T1

.

T2

.

T3

.

T

.

16

.

46

.

16

.

8

. 8.

24

.

10

.

12

.

8

.

8

.

12

.

20

.
16

.

20

.

10

.

18

. 8. 8.

10

.

14

.

12

.

10

.

8

.

8

.

8

.

44

.

16

.

16

Fig. 2.4: Variante.

18. We assign to the bipartite graph G = (V ∪W,E) a flow network N =
(V ∪W,E, s, t) with capacity c : E −→ Z and flow f : E −→ Z. We add
two additional nodes s and t to the nodes of G. The edges of E become
directed edges with the direction from V to W . Further we add for each
node v from V an edge (s, v) and for each node w from W an edge (w, t).
All these edges get the capacity 1.
Let Z be a matching in G. For each edge e = (v, w) from Z, we define
f(e) = 1, f(s, v) = 1 and f(w, t) = 1. Capacity limit and flow conserva-
tion are maintained. The number of edges in Z is equal to the total flow
F assigned to f .
Let f be a flow for N calculated with the Ford-Fulkerson algorithm using
augmenting paths. The evaluation of an augmenting path generates a flow
f with f(e) = 0 or f(e) = 1. Since the edges from s to V and from W
to t have capacity 1, all edges with flow 1 have different endpoints. They
define a matching Z. The number of edges in Z is equal to the total flow
F assigned to f .
It follows that the number of edges of a maximum matching in G is equal
to the maximum total flow F in the network assigned to G.

c⃝H. Knebl 2020

50 Weighted Graphs

The calculation of a maximummatching inG is reduced to the calculation
of a maximum total flow in N .

19. a. An augmenting path starts in s and ends in t. The number n− 1 of
edges of a path starting from a node of V1 and ending in a node of
V2 is odd. Altogether, the augmenting path has n+ 1 edges.

b. Since the edges are all directed from V1 to V2 and the flow along an
edge can only have the value 0 or 1, e1 ∈ Z, e2 /∈ Z, e3 ∈ Z,

c. Due to point b, the increase of the flow along an augmenting path
is 1. Therefore, the number of edges of the matching assigned to the
flow increases by 1 in each step.

d. The number k of edges in a matching is limited by min{|V1|,|V2|} =
O(|V |). Therefore, the number of iterations of Ford-Fulkerson is of
order O(m), where m is equal to the number of edges of G.

Algorithms and Data Structures by H. Knebl

