
IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

Structured Business Process Modeling
(SBPM)

Alfred Holl

Department of Computer Science,
University of Applied Sciences at Nuremberg, Germany

Alfred.Holl@fh-nuernberg.de

Gregor Valentin

Department of Computer Science,
University of Applied Sciences at Nuremberg, Germany

Gregor-V@web.de

▬▬▬

Abstract: Business process modeling (BPM) and control flow modeling
are types of process models (behavioral models). The current use of BPM is
accompanied by the same deficiencies as control flow modeling in its early
state. In an analogous way as unstructured program design and
programming (spaghetti code) had to be replaced by their structured
equivalents, a change in BPM is necessary. That is why the similarity
between control flow modeling and BPM has to be made explicit in detail.
This task is accomplished and a way for the necessary change in BPM is
proposed on the basis of a precise investigation of the parallels between
control flow modeling and BPM. This comparison leads to a core meta-
model of process models in general.

Keywords: process model, behavioral model, business process model,
control flow models, structured modeling, structured design, structured
programming, event-driven process chain, UML activity diagram,
structured flowcharts

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

1. Introduction: Historical analogy between the
evolution of control flow modeling styles and
BPM styles

BPM is a type of process modeling (behavioral modeling). Therefore, BPM
and its historical evolution can be compared to other types of this modeling
aspect, particularly to control flow modeling and its historical evolution.

BPM was introduced in the late 1980s in order to describe and to visualize
processes in enterprises. Companies deal with BPM in order to find
inefficiencies which cause financial losses. They may also want to establish
the documentation necessary for the ISO 9000 certification. On the basis of
a business process model of the current state, companies can redesign and
optimize their processes to develop a future planned state (business process
reengineering).

The current style of business process modeling, however, is similar to
control flow modeling in the 1960s. The unstructured programming style of
that time is called spaghetti code programming due to its lack of a
transparent structure. At that time, source codes were a total mess. It is true
that programs worked, but the more complicated they became, the less
understandable the source codes were. “There is nothing to prevent the
systems analyst from creating an arbitrarily complex, unstructured
flowchart” (Yourdon, 1989, 222).

This non-transparent style was no longer tolerable as it made it very difficult
to find bugs and to modify programs. Therefore, in the 1970s, a radically
new programming style, called structured programming, was introduced
although not generally used from the very beginning. Meanwhile, its
advantages are clear and no longer subject to discussion.

The current unstructured style of BPM, which we can call spaghetti BPM,
leads to similar problems as spaghetti coding. Due to this reason, a change
to structured BPM in analogy to the change to structured programming
within control flow modeling is desirable. BPM can learn a lot from
structured flowcharting.

The historical parallel in the evolution of control flow modeling and
business process modeling is outlined in table 1.

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

Table 1. Historical parallel between control flow modeling and BPM styles

Structured control flow modeling, closely related to structured
programming, was not achieved within one day. It was the result of a period
of development which had its starting point in the 1950s.

It is important to mention that control flow modeling in this context always
has two aspects: the program design using particular graphic notations and
the coding using particular procedural programming languages. Design
models, which support programming, have to be mapped onto source code
using the individual language constructs of procedural programming
languages. Therefore, changes with regard to both aspects were necessary.

Although it would have been possible to write structured code already at
that time with the first procedural programming languages, the
improvements by this style of programming were not recognized from the
very beginning. A reason was certainly that it causes a higher effort to
consequently use the block structures required. Untrained model designers
considered this constraint as a useless restriction of their ‘freedom’ without
a big profit. In addition, ‘natural’ human thinking does not work according
to the block structures of this style.

A second reason is that the theoretical basis of structured coding had to be
introduced. This did not happen before the late 1960s (cf. Böhm / Jacopini,
1966). The change of the coding style had to be accompanied by a change of
program design and its notations. “When structured programming first
became popular in the mid-1970s, Nassi-Shneiderman diagrams were
introduced as a structured flowcharting technique” (Yourdon 1989, 223).
Control flow charts, which did not enforce structured design (although they
already made it possible), were replaced by Nassi-Shneiderman diagrams
(Nassi / Shneiderman, 1973; Chapin, 1974) which did not allow anything
else but structured design.

Control flow modeling styles BPM styles

1950s
1960s

Spaghetti code
programming and
spaghetti design

late
1980s Spaghetti BPM

early
1970s

Structured programming
and structured design 2005 ? Structured BPM

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

In the same way as the step to structured control flow modeling, the step to
structured BPM will not be taken within one day. This paper proposes a way
for this necessary change on the basis of a detailed investigation of the
parallels between control flow modeling and BPM.

The question arises why these parallels are not considered as obvious within
the field of information systems where business processes are usually
modeled. This is due to the different views in computer science and
information systems: structured programming takes the more computer
science oriented view, BPM the more business oriented one. The contact
between these two branches is not close enough to generally recognize the
similarity between program design and BPM. Therefore, it has to be made
explicit in detail.

The starting point for this demonstration is the generally recognized
statement that both control flow models and business process models
describe sequences of activities and events, that they are types of process /
behavioral models.

The further argumentation in this paper runs as follows:

Chapter 2 shows the deficiencies of the current unstructured BPM style
using a typical example. It gives a clear motivation for a change towards
structured BPM. In Chapter 3, we improve our example by remodeling it in
a structured way. Thus, we demonstrate the profits of structured BPM in
general. In Chapter 4, we make an attempt to show the similarity between
control flow modeling and business process modeling in detail. Therefore,
we establish umbrella terms for the equivalent components of either
modeling approach. The similarity is outlined in a synopsis in graphical and
natural languages. Both of the modeling approaches are generalized in a
core meta-model for process / behavioral models. The paper terminates
with a conclusion in Chapter 5.

2. Motivation for a change of the current
unstructured BPM style: a typical example

In this chapter, we discuss a typical terrible example of the current
unstructured BPM style. Such models are widespread. The following
example is taken from a real student project in order not to violate any
copyright. The model is represented as a UML activity diagram.

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

Figure 1. Typical example of the current BPM style in the form of a UML
activity diagram

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

2.1 The current unstructured BPM style

The diagram represents a business process in a car rental company. Let us
first explain the process: The start event is triggered when a customer wants
to rent a car. He has particular expectations of the vehicle, e.g. he wants to
be able to transport nine people. This leads to the first activity in the model,
called ‘identify product’. The salesman has to decide, which product meets
the specific needs of the customer. He has to figure out, which of the cars
offered by his company is big enough to transport nine people. The next
activity is to check the availability of the product during the period required.
This can mean that another employee checks the car pool database whether
the bus chosen is available.

After that, the first decision has to be made. If the bus is available (not
rented by anyone else) and usable (no defects), the end of the process is
reached and the bus is rented to the customer. Otherwise, that is if the bus is
not available, we have to continue the process with the marked part. The
intention is to make the product available for the customer. If the bus is not
purchasable or its purchase is not useful, it could be rented from another car
rental company. Otherwise, if the company considers it as useful to own one
or another bus which is able to transport nine people, the company will buy
it. The process ends in both cases.

Why is the model not effective? Why it is unstructured? Let us first explain
the marked part. The positive branch of decision (3) is interrupted by
decision (4). Supposing that (4) is left on its positive branch, its predecessor
(3) will remain unclosed. In other words, decision (3) will not be closed in
one defined point. The two decisions are overlapping, but not nested. The
same situation can be found with regard to decision (1) and (2). To explain
the same problem in different words, we can say: if decision (2) is left on its
positive branch, it is not closed before decision (1) is closed. This violates the
LIFO principle of correctly nested alternatives as the inner alternative (2) is
not completely contained in the yes branch of the outer one (1).

This was a simple example restricted to alternatives which we had to choose
in order to meet the limitations of a short research paper. Just imagine a
more complex example with overlapping loops and alternatives leaving the
loops in arbitrary places. You can encounter comparable situations in many
business process models. This nightmare of every modern programmer is
still common within current BPM without being exposed to hard criticism.

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

2.2 The current unstructured BPM style and its
notations

As already pointed out in Chapter 1, the use of structured control flow
modeling depends on the possibilities provided. Most of the program design
notations and most of the procedural programming languages do not
enforce structured design and coding, although they allow it. In these cases,
the programmer’s effort is required. The famous exception is the very
restrictive Nassi-Shneiderman diagram which only allows structured design.
“The Nassi-Shneiderman diagrams are generally more organized, more
structured and more comprehensible than the typical flowchart” (Yourdon,
1989, 224). The situation is that either hard discipline or restrictive
notations / languages lead to structured control flow models.

Let us now have a look at the corresponding situation with regard to BPM.
We can analogically transfer each word of Yourdon’s comment on process
specifications: “Unless great care is taken, the flowchart can become
incredibly complicated and difficult to read” (Yourdon, 1989, 290). None of
the current notations for BPM automatically leads to structured models (cf.
the synopsis in Keller, 2000, 53). State-transition diagrams and UML
activity diagrams (cf. Keller, 2000, 51 and 116 for examples of unstructured
modeling style and Keller, 2000, 110 for a synopsis of various UML
behavioral diagrams) let the ‘freedom’ of unstructured design.

The same statement applies for event-driven process chains (EPC). A.-W.
Scheer, their well-known inventor, gives a description (Scheer, 1994, 46-51)
where the concepts of correctly nested alternatives and correctly nested
loops are not even mentioned, a specific symbol for loops is not introduced
(cf. 3). Scheer presents a great many of spaghetti EPC diagrams in his book
on business process engineering. The lack of structure is obvious in figures,
such as B.I.37, B.I.132.a, B.I.222, B.II.09, B.II.24, C.II.56 (Scheer, 1994),
which are far from being transparent.

The great effort put into these new model notations does not prevent model
designers from unstructured BPM. If it is desired in a project to use non-
restrictive notations (other than Nassi-Shneiderman) to represent business
process models, the structuring problem exists independent of the notation
chosen. In these cases, structured modeling remains a question of the
designer’s principles based on the understanding of the advantages of
structured BPM.

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

3. Demonstration of the opposition between
unstructured and structured BPM styles:
improvement of the example

In opposition to the BPM example from Chapter 2, designers who follow a
structured style use a set of modeling components (control constructs)
which make the control flow transparent and well structured. Yourdon
speaks of “structured English” (Yourdon, 1989, 206-214) and states that “to
create a structured flowchart, the systems analyst must organize his or her
logic with nested combinations of the flowchart symbols [by Böhm-
Jacopini]” (Yourdon 1989, 222). We summarize the characteristic features
of structured programming in our own words:

• block structures: BEGIN-END blocks, IF-ENDIF blocks, CASE-
ENDCASE blocks, LOOP-ENDLOOP blocks instead of GOTO-
instructions

• hierarchically nested structures (LIFO principle: the block opened as the
last one has to be closed as the first one) instead of overlapping
structures

• hierarchic modular structure (vertical decomposition by subroutines)

Let us now apply these features to the unstructured example from Chapter 2
and transfer it into a structured one in order to show that the principles of
structured programming are well applicable to BPM as well.

First, we remodel the inner block which is marked. To nest decision (4)
completely into the positive branch of decision (3), it is necessary to double
the function ‘rent product’.

Doing so, as shown in the improved diagram (fig. 2), the inner decision (4)
which was opened as the last one is closed first. It is now nested in the outer
one (3).

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

Figure 2. Improved business process model in the form of a UML
diagram

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

Figure 3. Well structured business process model in the form of a UML
activity diagram

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

We can see that the entire model does not yet have a structured form
(decisions (1) and (2)). To develop this, we could follow the same strategy as
before and double the marked part in order to use one for the no-branch of
decision (1) and the other one for the no-branch of decision (2). It is true
that this would lead to a structured model, but also to a complex diagram.
Because of this problem, we decide to combine the two decisions to one. The
result is shown in fig. 3.

Now the model is completely structured, but it is entirely equivalent to the
original example in Chapter 2. This illustrates, that BPM can be done in a
structured way like structured program design.

Nevertheless you could still object that we cannot compare BPM and control
flow modeling in detail. Models of business activities did not have anything
in common with procedural programming and the analogy were taken from
too far. Therefore, it is inevitable to have a close look at a precise
comparison of the elementary components of the two modeling approaches.

4. Analogy of the elementary components of
control flow models and business process
models

In this chapter we will show, that control flow models and business process
models have analogous elementary components although they model
different situations and use different notations. Both are behavioral models
as they represent courses of activities and events. While the main aspect of
the programmer is the source code which he has to write, the main view of
the business process model designer are the enterprise and the business
process which he has to represent. Although both of them use different
perspectives, we can figure out analogous elementary components in either
modeling approach.

Examples:

• The instructions of the programmer are the business activities of the
business process model designer. We can call this type of elementary
components process units using an umbrella term on a more abstract
level.

• Events in a company are caused from outside of the company, e.g. a
phone call from a customer, or from inside a company when an activity

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

is finished. For programmers, an event is always induced by the
operating system.

• For a business process modeler, iteration means to repeat the same
business activities in the same order for several times in a cycle. For the
programmer, this means a repetition of the same program instructions
in a loop.

Continuing this way, it is possible to compare all of the other elementary
components of either modeling approach. To make this more obvious, table
2 shows the analogies of the terminology for elementary components of
BPM and control flow modeling and makes an attempt to establish umbrella
terms. A comparable synopsis of behavioral models with other aspects of
comparison is presented in Keller, 2000, 37.

Umbrella term BPM Control flow modeling
Modular substructure partial process subprogram, subroutine
Sequence sequence sequence
Test, alternative, decision XOR IF
Iteration cycle loop
Event business event operating system event,

interrupt
Process unit business activity instruction or block of

instructions
Simultaneity AND parallel functions

Table 2. Analogy of the elementary components of BPM and control flow
modeling

Both of the modeling approaches differ not only in the names of their
elementary components. They also use different notations. In table 3, the
most common notations of structured programming and BPM are assigned
to the corresponding umbrella terms.

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

Table 3. Analogy of the notations of BPM and control flow modeling

Umbrella
term

Structure
diagram
(DIN 66 261)
according to
Nassi-
Shneiderman

Control flow chart
(DIN 66001)

Block
diagram:
extensions of
DIN 66001

Event driven
process chain
(EPC)

Modular
substructure

Sequence

Alternative,
decision

Iteration:
DO-WHILE,
REPEAT-
UNTIL,
WHILE

No symbol

Event No symbol No symbol

Process unit

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

It is now shown that each elementary component of control flow modeling
has its analogous counterpart in BPM. In addition, business process models
can contain non-temporal information: the essential components describing
the mere course over time can be extended by roles (actors), such as external
partners and responsible departments / persons, and by data stores and
resources used. But these components are only accidental as they do not
affect the temporal structure of a process / behavioral model. As a result, we
can state that all of the features of structured programming (cf. list at the
beginning of Chapter 3) can be transferred to BPM.

Furthermore, table 2 contains a striking argument for the equivalence of
control flow models and business process models, which should convince
everyone who is still in doubt. The umbrella terms of elementary process
components in table 2 can be regarded as a core meta-model of process /
behavioral models in general (a meta-model is a list of all possible
elementary components which can be used to establish models of a specific
type). It describes possible components of process models in terms of a
formalized natural language and is therefore independent of any notation,
such as UML. We could extend it by additional accessories, such as those
just mentioned, thus developing a comprehensive meta-model of process
models in general.

5. Conclusion

In this research paper, it was demonstrated that the principles of structured
programming are usefully applicable to BPM and that the elementary
components of both of the modeling approaches are analogous. From this, it
is obvious that considerable improvements should take place with regard to
the current style of BPM. We give an open list of requirements to structured
BPM:

• Block structures should be used instead of mere control flow lines
(corresponding to GOTO instructions): the notations for all of the
elementary components without the mere sequence must comprise a
divergent delimiter (begin) and a convergent delimiter (end,
synchronization); the delimiters have to be arranged symmetrically in a
diagram: IF – ENDIF (cf. BEGIN XOR – END XOR); CASE - ENDCASE;
LOOP – ENDLOOP; BEGIN AND – END AND; BEGIN OR – END OR.

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

• In the case of concurrent block structures, hierarchically nested

structures (LIFO principle: the block opened as the last one has to be
closed as the first one) should be used instead of overlapping structures.

• A motivated hierarchic modular structure (in accordance to
subroutines) should be used to decompose processes vertically (cf. Holl,
2000).

• We urgently recommend the extension of BPM notations by symbols for
iterations. Every experienced programmer will realize the current lack.
Within structured programming, iterations have turned out to be a very
important elementary component for control flow models.

The advantages of structured programming have been proven by an
experience of 30 years. The advantages of structured BPM will be similar:

• Business process models will become more transparent; therefore, they
will be graphically and verbally documented more easily.

• The modification and adaptation of business process models will
become easier.

• The optimization of business process models (business process
reengineering) will be done in a more efficient way.

• The mapping of business process models to workflow management
systems (WFMS) will become more effective.

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

Bibliography

Böhm, Corrado; Jacopini, Giuseppe (1966). Flow diagrams, Turing
machines and languages with only two formation rules, Communications of
the ACM, Vol. 9, Nr. 5, 366-371.

Chapin, Ned (1974). New format for flowcharts, Software – Practice and
experience, Vol. 4. Nr. 4, 341-357.

Davis, Rob (2001). Business process modeling with ARIS: a practical guide,
London.

Eriksson, Hans-Erik (2000). Business modeling with UML, New York.

Holl, Alfred; Auerochs, Robert (2004). Analogisches Denken als
Erkenntnisstrategie zur Modellbildung in der Wirtschaftsinformatik
[Analogical thinking as a cognitive strategy for model design in information
systems], in Frank, Ulrich (ed.). Wissenschaftstheorie in Ökonomie und
Wirtschaftsinformatik: Theoriebildung und –bewertung, Ontologien,
Wissensmanagement, Wiesbaden, 367-389.

Holl, Alfred; Krach, Thomas (2000). Geschäftsprozessmodellierung und
Gestalttheorie [Business process modeling and theory of gestalt], in
Britzelmaier, Bernd et al. (ed.). Information als Erfolgsfaktor: 2.
Liechtensteinisches Wirtschaftsinformatik-Symposium an der FH
Liechtenstein, Stuttgart, 197-209.

Holl, Alfred (1999a). Empirische Wirtschaftsinformatik und evolutionäre
Erkenntnistheorie [Information systems as an empirical science and
evolutionary epistemology], in Becker, Jörg et al. (ed.). Wirtschafts-
informatik und Wissenschaftstheorie: Bestandsaufnahme und Perspektiven,
Wiesbaden, 163-207.

Hughes, Joan K. (1987). A structured approach to programming, Englewood
Cliffs NY.

Keller, Sven (2000). Entwicklung einer Methode zur integrierten
Modellierung von Strukturen und Prozessen in Produktionsunternehmen,
Fortschritt-Berichte VDI, Reihe 16 (Technik und Wirtschaft) Nr. 117,
Düsseldorf.

Le, Van K. (1978). The module: a tool for structured programming, Zürich.

Linger, Richard C. (1979). Structured programming: theory and practice,
Reading, Mass.

IRIS27
Holl, Alfred; Valentin, Gregor: Structured business process modeling

MacGowan, Clement L. (1975): Top-down structured programming
techniques, New York.

McCracken, Daniel D. (1984): COBOL, Munich.

Nassi, I; Shneiderman, B. (1973). Flowchart techniques for structured
programming, ACM Sigplan Notices, Vol. 8, Nr. 8, 12-26.

Rajala, Mikko (1997). A framework for customer oriented business process
modeling, Espoo.

Scheer, August-Wilhelm (1994). Business process engineering: reference
models for industrial enterprises, Berlin.

Schneyer, Robin (1984). Modern structured programming: program logic,
style, and testing, Santa Cruz CA.

Yourdon, Edward (1989). Modern structured analysis, Englewood Cliffs NJ.

