

Alfred Holl
Felix Paetzold
Robert Breun

Cooperative, cyclic-iterative knowledge gain
in information systems anti-aging

Georg Simon Ohm University of Applied Sciences
Nuremberg, Germany

2011

ISBN 978-3-00-034697-2

 3

ABSTRACT

This study shows a new way of aligning the evolution of an organization’s
information system with its own evolution: a methodological guideline for IS
consultants is built upon an explicit epistemological basis. In the first part,
given the epistemological properties of an organization (a psycho-social, time-
sensitive environment), the need of a close cooperation between organization
experts and IS experts (“observers” with different points of view) is underlined;
“soft” skill training strengthens the effectiveness of communication between
the two different perspectives in evaluating the “world” of an organization. A
permanent cyclic-iterative knowledge gain is envisaged via the cooperation and
convergence of different “scientific disciplines” and “approaches” that enable
multi-level learning within the organization. Such learning constitutes a core
method of information systems design, development and maintenance. In the
second part, information systems are classified and the term information
systems aging is defined. According to Lehman’s laws, a lack of appropriate
anti-aging methods leads to an enormous increase in information systems
complexity and, in consequence, to a complete loss of usability and
maintainability of the information systems affected. Therefore, specific
methods against information systems aging are presented for the different
phases (analytic, synthetic and maintenance phase) of the information systems
life cycle. All of these methods refer to the aspects of temporal dynamics of
organizations and / or common responsibility of organization experts and IS
experts and can be visualized by cycles of knowledge gain (mayeutic cycles).
Keywords: change management, cognition, creeping requirements,
epistemology, E-type system, information systems aging, mayeutic cycle,
multi-perspectivity, requirements engineering, software maintenance

4

PREFACE OF THE SENIOR AUTHOR

This research report covers the wide range from the epistemological
foundations of information systems anti-aging to selected anti-aging methods
for the practical use in organizations. Therefore, it addresses researchers and
senior students in the field of information systems as well as practitioners in
business and administration.
The study is the extended version of two master’s theses in information systems
written by Felix Paetzold and Robert Breun at the Georg Simon Ohm
University of Applied Sciences of Nuremberg, Germany, in spring 2007.
I would like to express my acknowledgments to

• Werner Kügel, University of Applied Sciences of Nuremberg, for
checking the English manuscript

• Hans-Erik Nissen, University of Lund, Sweden, for fruitful discussions
during the initial phase of this research project

Nuremberg, Germany, July 2011 Alfred Holl
 Alfred.Holl@ohm-hochschule.de

 5

TABLE OF CONTENTS

1. INTRODUCTION 7

1.1 Overview of structure, aims and reasoning 7

1.2 Epistemological and terminological remarks 8

2. INFORMATION SYSTEMS EVOLUTION AS PROCESS OF COOPERATIVE,
 CYCLIC-ITERATIVE KNOWLEDGE GAIN 12

2.1 Epistemological properties of organizations as IS observanda 12

2.1.1 Mutual influence of observer and observandum in organizations 14

2.1.2 Temporal dynamics of organizations 17

2.2 Knowledge gain in organizations 19

2.2.1 Cooperative knowledge gain: multi-perspectivity of IS experts and
 organization experts 19

2.2.2 Cyclic-iterative knowledge gain: mayeutic cycle 24

3. INFORMATION SYSTEMS ANTI-AGING SUPPORTED BY COOPERATIVE,
 CYCLIC-ITERATIVE KNOWLEDGE GAIN 31

3.1 Fundamental definitions 31

3.2 Information systems anti-aging methods during the analytic phase 34

3.2.1 Requirements engineering 34

3.2.2 Open models: local and temporal extrapolation 36

3.3 Information systems anti-aging methods during the synthetic phase 39

3.3.1 Changed (creeping) requirements management 39

3.4 Information systems anti-aging methods during maintenance 41

3.4.1 Types of information systems maintenance 42

3.4.2 Types of information systems maintenance and their relation to
 Lehman’s laws of software evolution 43

3.4.3 Change management 45

3.4.4 Information systems reengineering 46

4. CONCLUSION 48

5. REFERENCES 49

6

 7

1. INTRODUCTION

1.1 Overview of structure, aims and reasoning

A lot of people would probably think of plastic surgery when they were asked
about the term “anti-aging”, and hardly anyone would think of software or
information systems. There are two main reasons why the authors decided to
write about information systems anti-aging although it is not very popular in IS
theory (in this study, the scientific discipline information systems is always
abbreviated to IS).
The first one is that we are convinced of the importance of a discussion about
information systems anti-aging. If no anti-aging methods are applied during
development and maintenance, the life cycles of information systems will be
shortened extremely and, as a result, high costs and great efforts will be
required for the design and development of completely new ones.
The second reason is that the mayeutic cycle as the general epistemological
core model of knowledge gain can be applied in an excellent way to describe
background and solutions of information systems anti-aging.
With regard to organizations and their information systems, knowledge gain
has a cooperative and a cyclic-iterative aspect as organizations (with the term
organization comprising any profit and non-profit organizations in industry and
administration) are psycho-social and time-sensitive environments. Our two
main lines of argumentation are based upon these two essential properties of
organizations. Organization experts and IS experts have to cope with the multi-
perspectivity of their different views (cooperative aspect in Sections 2.1.1 and
2.2.1) as well as with the temporal dynamics of organizations during
information systems maintenance (cyclic-iterative aspect in Sections 2.1.2 and
2.2.2).
To learn how to deal with these two issues will contribute a lot to solve the
question of what can be done against information systems aging (Section 3).
All of the methods presented will include the cooperative and the cyclic-
iterative aspects.
Although the philosophic terminology of approaches like ours is not common,
it would be advantageous to make IS experts aware of this background and to
encourage further research in this field. Therefore, we emphasize a strong and
deep theoretical foundation in the following section.

8

Figure 1: Modeling process from the view of realism

(adapted from Holl & Krach, 2002, p. 54)

1.2 Epistemological and terminological remarks

Within the field of epistemology, also called theory of knowledge, the
fundamental questions about human knowledge acquisition (origin, nature,
limits) are discussed. Karl Popper systematized the discussion with his
ontological model of three levels of existence (ontological levels) for objects of
cognition (Popper, 1972): a real world (World 1, reality of organizations), a
world of subjective experience (World 2, the mental models of an organization
expert or an IS expert) and a cultural world (World 3, documented models and
human artifacts, such as information systems) (Figure 1).

We do not refer to Popper’s critical rationalism, but only to his theory of the
three worlds as an epistemological meta-model. His assumption of World(s) 2
is closely related to basic considerations of hermeneutics (the interpretation of
the meaning of texts and works of art) and phenomenology (studies everyday
life experiences and perceptions of individuals) because phenomena as personal
experiences are assigned to World 2. With regard to phenomenological
methods, we confine ourselves to basic principles, such as Heidegger’s
statement that “phenomenological description as a method lies in
interpretation” (Heidegger, 1962).
On the whole, our approach is eclectic. Its epistemological basis is composed of
elements from critical realism, moderate constructivism and evolutionary
epistemology, the latter connected to the names of Konrad Lorenz, Rupert
Riedl and Gerhard Vollmer. All of these researchers consider older
philosophical traditions in the light of modern biology. A couple of years ago,
one of us (AH) already successfully transferred some of Riedl’s thoughts to IS

 9

(Holl, Krach & Mnich, 2000, pp. 204-208) and we would like to do that again
in this study.
As epistemological approaches cannot generally be discussed within the scope
of this study, we will follow the brief argumentation in Holl & Krach (2002,
pp. 54-55), adopt Karl Popper’s three worlds and assume the existence of a
world of reality outside of the human consciousness (cf. Schmidt, 1982, p. 572)
that exists independently of human perception. Epistemologically, this
standpoint is called realism. Its two main variants, the naïve one and the critical
one, will now be characterized as well as moderate constructivism and, as an
explanatory approach for critical realism, evolutionary epistemology (for more
details cf. Holl & Maydt, 2007, pp. 42-49).
Naïve realism: there exists a real world; it is such as we perceive it (Vollmer,
1990, p. 35). This view is well suitable for small problems of everyday life, but
encounters its limits as soon as we leave the everyday area and advance into
areas with ‘very small’ objects (e.g. quantum dynamics) or areas with ‘very
large’ objects (e.g. astronomy) or deal with complex problems, such as the
modeling of socio-technical structures as in IS. Keeping the assumption that a
real world exists, the legitimate critique of naïve realism (e.g. due to optical
illusions, Heisenberg’s relation of uncertainty) leads to critical realism.
Critical realism (cf. Bhaskar, 1989): there exists a real world; but it is not
completely such as we experience it (Vollmer, 1990, p. 35). The critical realist
assumes that subjective distortions influence the human perception of real
world objects. Critical realism is not far from moderate constructivism (cf. Holl
& Maydt, 2007, p. 45; Goorhuis, 1994) which, as critical realism, does not
consider humans as passively perceiving beings, but as beings who construct
their world(s) on their own. On comparison with critical realism, the
constructed part of human knowledge is emphasized more strongly.
Evolutionary epistemology: we can assume that the subjective structures of pre-
scientific experiential cognition, including the (neural) structures of perception,
are adapted to the environment where they were developed. Nevertheless, it
cannot be expected that these cognitive structures are suitable for all real
structures, nor that they are adequate to perceive all these structures correctly
(Vollmer, 1990, p. 162). Due to evolution, the cognitive structures of humans
are limited and only partially universal. Therefore, reflection about the
functionality of the human cognitive equipment is necessary if one goes beyond
everyday world, that is, if we leave the area in and for which the human
cognitive strategies were selected in the course of evolution (Vollmer, 1990,
p. 161).
Before this background, we will now discuss the use of the term “system”
according to the considerations in Holl (1999, pp. 192-194).

10

Decomposition (structuring) is a prerequisite for a reduction of complexity. The
latter is necessary for any knowledge. Humans have to structure their World 1
images in order to reduce the latter’s complexity. They have to divide the
images into a lot of components; otherwise their human cognitive power would
not be able to cope with them. It is quite natural that the procedure of
decomposition destroys interdependencies between the components.
Therefore, humans try to use their “cognitive scissors” only in those places of
their World 1 images where they suppose only a few connections which they
consider as negligible from an idealistic point of view. In a naïve-realistic
manner, they retransfer this assumption to World 1. More or less arbitrarily,
they delimit components / segments (which, for instance, can encompass
processes, items, information), isolate them from their interdependencies and
“cut” them out artificially. Thus, a dilemma arises which we call the problem of
isolation (cf. Holl, 1999, pp. 192-194). Humans have to acquire knowledge
about World 1, but they can do this only via decompositions which, on the
other hand, neglect interdependencies.
Humans construct systems (mental representations of World 1 segments) which
become part of World 2 or World 3 when they are described verbally. Humans
believe in a naïve-realistic way that systems belong to World 1. But from our
point of view, systems are special kinds of models, descriptive categories
which are to approximate immanent categories of World 1. Our interpretation
of systems is similar to Peter Checkland’s (1981, pp. 162-166) who has chosen
to reserve the term “system” for what he calls “notional systems”, i.e. what
somebody (or some group of persons) in some context for some reason chooses
to look upon as a system.
Structuring is continued on the following lower level. Humans give an internal
structure (order) to systems by dividing them into interacting components
(therefore, a system is more than the sum of its components). The internal
connections (between the components) are assumed to be stronger than the
external connections (of the entire system to its surroundings). The components
can now be interpreted as (sub- / partial) systems in their turn. The
decomposition process continues on diverse abstraction levels.
It is true that there are no natural, closed (self-contained) systems, that are
completely separated from their environment and do not have any kind of
interactions and exchange with it. There must, however, be segments of
World 1 (“system-like structures”) with strong internal connections and weak
external ones. Otherwise the cognitive use of segmentations of that kind would
have been eliminated during evolution (this is an argument from evolutionary
epistemology). The starting point of the system concept can be found in
optical-tangible items, whose visual contours coincide with their tangible
boundaries. Physically spoken, they are solids (for instance apples, stones) with

 11

very strong internal connections and comparably weak external ones. They can
be moved in relation to other items. Items of that kind can be comprehended in
a naïve-realistic way. Starting from this type of objects of cognition, the system
concept is transferred to other objects of cognition, for instance organizations
or departments, where it is only applicable with the necessary restrictions and
modifications.
Based upon the understanding of systems mentioned, we can say that an open
system is a descriptive entity (in World 2 or World 3) representing a “system-
like structure” of World 1 where exchanges (of information, temperature,
chemical substances etc.) with the surroundings are considered as important by
some person in some context. A social system is always an open system which
describes a group of living organisms, especially of humans.
Ending this sequence of terminological explanations, we use the term
organizational information system for an open information-processing system
with or without IT support. A technical information system, briefly information
system, is the software part (technical system) of an organizational information
system.
To label people working with information systems, we drop the traditional
word user and replace it with the more adequate term organization expert; this
is already done in the essential book by Steinmüller (1993, p. 168). From our
view, an organization expert is every human in an organization who is
somehow affected by an information system – a worker as well as the chief
executive officer. The authors are aware of the fact that there are organization
experts in different functions and on different hierarchical levels (cf.
Hirschheim & Klein, 2003, pp. 266-267) whose responsibility, knowledge and
participation regarding development and use of information systems are very
different. As the differences between the various kinds of organization experts,
however, are not in the focus of this study, using the umbrella term
organization expert allows better argumentation. Therefore the main distinction
in this study remains the one between organization experts and IS experts, that
is, between persons inside and outside the organization who have to cooperate
in developing and maintaining the organization’s information system.

12

2. INFORMATION SYSTEMS EVOLUTION AS PROCESS OF COOPERATIVE,

CYCLIC-ITERATIVE KNOWLEDGE GAIN

2.1 Epistemological properties of organizations as IS observanda

Organizations and parts of them (departments) as the objects of cognition
(observanda) in IS are segments of reality that can be described as dynamic,
open, psycho-social and information-processing systems:

• psycho-social as they comprise humans who work together in a social
context as well as
open and information-processing as they exchange (send and receive)
information with their environment; this property (Section 2.1.1) will
lead to the cooperative aspect of permanent knowledge gain
(Section 2.2.1)

• dynamic as their behavior and structure may change over time; this
property (Section 2.1.2) will lead to the cyclic-iterative aspect of
permanent knowledge gain (Section 2.2.2)

This is not a complete list (cf. Holl, 1999, pp. 194-198; Holl & Maydt, 2007,
pp. 40-41) of an organization’s epistemological properties, but only mentions
those relevant in the context of information systems anti-aging.
In contrast to observanda in natural sciences, objects of cognition in social
sciences, such as organizations, cannot only be observed. The human beings
constituting an organization have the ability of verbal communication and thus
can inform – in a subjective way, of course, not in an objective way – the
observer about their activities and their mental models (cf. Section 2.1.1; cf.
Holl & Maydt, 2007, pp. 33-34).
This is just the point where hermeneutics becomes important in IS (cf.
Section 2.2.2) as the statements of organization experts and IS experts have to
be interpreted and understood mutually. Therefore, on the one hand, a mere
functionalist and technological view is completely misleading. On the other
hand, however, we consider it a false axiom to assume that the observation of
an organization could be confined to hermeneutic methods as the organization
experts would know everything best about their organization. This can be
correct for some well-managed and well-structured organizations, but it is not
correct for ordinary and especially for chaotic organizations which cannot
successfully cope with the needs of the market without any cooperation of
consultants and IS experts. Therefore, observation in IS has to include – at least

 13

– the observation of human informational products, such as customer lists,
orders, invoices, statistic lists, statements of account etc., the optimization of
business processes and the transfer of reference knowledge from other
organizations in order to finally design adequate formal data and process
models (cf. Section 2.2.1).
This is the reason why hermeneutics is not sufficient to describe the knowledge
gain regarding organizations. Due to the two special features of organizations
(mentioned above), observation in IS has a lot in common with observation in
social sciences although it goes beyond a mere observation of human behavior
in a social context and a mere hermeneutic interpretation of statements of
organization experts.
Therefore and according to our personal background, we prefer observation in
natural sciences as a starting point for a characterization of observation in IS.
Furthermore, ethology (scientific study of animal behavior; can be extended to
human societies) and psychology (both considered as natural sciences) are
closely related to many aspects of sociology as well.
Compared to objects of cognition in natural sciences, there are, according to the
two properties mentioned above, at least two important aspects of organizations
which have to be considered in the area of information systems anti-aging:

• the mutual influence of observer and observandum (cf. Section 2.1.1)

• the temporal dynamics of organizations (cf. Section 2.1.2)

14

2.1.1 Mutual influence of observer and observandum in organizations

As organizations are psycho-social entities, their behavior can be influenced by
observation and observers, similar to the behavior of sub-atomic particles in
modern physics (the properties of which are completely different from those of
Newtonian physics) or the behavior of animals in ethology. IS experts as
observers cannot avoid this influence, but they have to be aware of it because
they cannot and shall not hide themselves.
For instance, employees can be afraid of being fired, of a new IT system or of
changes in general; others look forward to being supported by a new IT system
as soon as possible or have false expectations towards it etc. All of these
emotions exert an influence on the behavior of employees in the organization
observed.
If an organization expert, interviewed by an IS expert, notices that he could
perform some of his tasks more efficiently, one can imagine the following
reactions (cf. Holl & Maydt, 2007, p. 42; Holl, 1999, p. 205):

• The organization expert changes his activities, but does not inform the IS
expert about the modification. The latter still knows the old ones.

• The organization expert informs the IS expert about possible
improvements, but keeps his old business processes unchanged.

• The organization expert intentionally describes his activities in a
palliative way, e.g. in order to hide inefficiency.

• The organization expert totally refuses to collaborate with the IS expert.

• The organization expert tries to act better than usual for a short time, but
then returns to his old behavioral patterns.

The cartoon in Figure 2 is a good example for avoiding the observer’s influence
on the object of cognition. It shows a mole that is observed by an ethologist. By
using a self-made molehill as camouflage, the ethologist hopes that he can
observe the natural behavior of the mole without disturbing it. Whether the
mole and its behavior are still affected by the presence of the ethologist or his
camouflage (which in this case would counteract its intended purpose) or not,
remains uncertain (cf. Holl & Maydt, 2007, pp. 37-38); e.g. the ethologist can
destroy tunnels of the mole by digging his observation hole etc.

 15

Figure 2: Ethologist and mole
(cf. Holl & Maydt, 2007, p. 38;

adapted to IS by Schmidt, 1993, p. 12 from Bülow, 1968, p. 19)

However, the cartoon can also be interpreted the other way round. By
observing the mole for a long time, the ethologist seems to adapt to parts of the
mole’s behavior. For instance, the posture of the ethologist in his hole is very
similar to the mole’s posture. Particularly the posture of the ethologist’s hand
matches the posture of the mole’s claw.
This aspect shows that not only observanda can be influenced by observers,
but, vice versa, observers (IS experts) can be influenced by their objects of
cognition, that is, by organization experts.
At least two different kinds of influence by organization experts on IS experts
can be distinguished:

• influence via language communication

• influence via transport of emotions

The organization experts can inform about themselves and their activities (cf.
Section 2.1). Interpretations of an organization depend on their presentation. As
a consequence, an eloquent employee can certainly explain his opinion of the
organization more clearly and more effectively than a taciturn and shy
employee and thus can more strongly influence an IS expert.

16

Depending on the personal relationship between the IS expert and the
organization expert, the information flow is affected positively or negatively
due to emotions: In case of antipathy, a tense atmosphere will predominate in a
conversation. The IS expert is less motivated and does not adequately take the
organization expert’s statements into consideration. If mutual sympathy
predominates, however, the conversation will take place in a relaxed
atmosphere. The IS expert is better motivated, shows more interest in the
organization expert’s arguments and, therefore, can solve open problems more
easily (cf. Holl & Maydt, 2007, p. 42).
So after all, it is evident that the subject-object (observer-observanda)
separation cannot be conserved, neither by an ethologist nor by an IS expert.
As almost any kind of observation within an organization is detected by
someone and, furthermore, hidden observation often is at odds with laws
protecting the employees’ rights, a separation of that kind is almost impossible
in the reality of an organization. The organization will always realize observers
and observations with the consequence of mutual influence. Even if the subject-
object separation were intended (IS experts should not do that!), it could not be
achieved.
These considerations lead to the insight that subject and object of cognition in
IS are not strictly separated from each other as a naïve-realistic point of view
(Figure 3, 1.) would assume, but together form a new structure in which the
observation is done (Figure 3, 2.). Therefore, we can say that the observer (like
the ethologist) does not simply observe the organization’s behavior, but, more
exactly, that he – influenced by the organization – observes how the
organization behaves under his observation (cf. Holl & Maydt, 2007, pp. 37-
38). From a critical-realistic view, an observer and his observandum always
build a new structure that can be described as a new system consisting of
observer and observandum.

 17

2. Critical-realistic view: mutual influence of observer and observandum described as a new system
consisting of observer and observandum

Observer Observandum

1. Naïve-realistic view: separation of observer and observandum

Observer Observandum

Mutual influence

Observation

Observation

Figure 3: Mutual influence of observer and observandum

This argumentation will be continued in Section 2.2.1.

2.1.2 Temporal dynamics of organizations

Organizations are temporally dynamic. Due to internal and external reasons,
they can change their behavior and thus affect information systems and cause
changes in them and, therefore, inevitably the aging of information systems.
If an organization is forced by law to collect additional data about its business
activities, we encounter an external reason for the demand to integrate a new
module in the organization’s information system. An example for an internal
reason is a new management that changes the organization’s structure. In this
case, the information system has to be adapted to the new structure.
This dynamics of objects of cognition does not occur in Newtonian physics
(some stone will “always” behave in the same way), but in sub-atomic particle
physics (wave-particle dualism) as well as in ethology and psychology where
the behavior of individuals and social groups is dealt with.
The temporal dynamics of organizations requires an adequate information
system life cycle model, such as the exemplary one in Table 1.

18

Design step

Main phase

Sub-phase

Model level

Model purpose

Elicitation of the
current state of the
organization

Analysis of the
current state of the
organization

Descriptive
models

(Re-) Design of the
planned state of the
organization (LOCK)

Analytic
phase:
problem
analysis

(Re-) Design of the
business concept of the
information system
(KEY)

Information-
relevant models

Design of the technical
concept of the
information system

Programming

Test

Implementation-
relevant models

First
design

and

maintaining
redesigns

Synthetic
phase:
IT system
development
and use

Use in an organization

Information-
relevant models

Prescriptive
models

Table 1: Information system life cycle model

(adapted from Holl, 1999, p. 199)

The life cycle model in Table 1 can be applied to the development of individual
software and to the customizing of standard software. In an initial step, a first
version of an information system is developed which is later on maintained in
many iterative steps.

 19

The aim of the initial step is the first design of an information system. To
achieve this aim, an analytic main phase must be passed. There, the current
state of the organization is elicited and analyzed using descriptive information-
relevant (without respect to IT details) models which aim at the detailed
understanding of a problem. Still in the analytic phase, the planned state of the
organization (lock) and the information system’s business concept (key) are
designed using prescriptive information-relevant models which aim at the
construction of conceptual models (cf. Holl, 1999, p. 199).
The principle of key and lock visualizes the situation of an information system
and its application area in an organization. They have to perfectly fit together
like key and lock. To achieve this aim, good co-operation between IS experts
and organization experts is inevitable. From this follows their common
responsibility for an adequate design of the planned state of the organization as
a prerequisite for an efficient design of the business concept of the information
system (cf. Section 2.2.1).
After the analytic phase has been completed, the synthetic phase has to be
started. A first version of the technical concept of the information system is
designed, programmed and tested using prescriptive implementation-relevant
(with respect to IT details) models which aim at the construction of an IT
system. Then, the information system is installed and used in an organization.
The initial step of the first design is followed by iterative steps of maintaining
redesign which in turn consist of exactly the same phases and subphases as the
initial step.
This argumentation will be continued in Section 2.2.2.

2.2 Knowledge gain in organizations

2.2.1 Cooperative knowledge gain: multi-perspectivity of IS experts and

organization experts

Regarding the background outlined in Section 2.1.1, we now explain the
cooperative aspect of permanent knowledge gain in organizations. Due to its
temporal dynamics, an organization can change its behavior and – in succession
– make a redesign of the business concept of its information system (key)
neccessary. According to the principle of key and lock, this automatically leads
to the consequence that the design of the planned state of the organization
(lock) also has to be adapted to the new conditions.

20

Figure 4: Systems are relative to perspectives
(adapted from Steinmüller, 1993, p. 168)

Therefore, the employees in the organization observed carry a great
responsibility to inform the IS experts about their organization (and its business
processes, information flows, data etc.). This is why the employees have to be
treated (by the IS experts) as organization experts and not only as IT users.
Figure 4 shows the different perspectives of an IS expert and an organization
expert on identical segments of reality. An organization expert is not able to
communicate with an IS expert from the very beginning because of their
different points of view in relation to one and the same issue.

Therefore, in order to avoid misunderstandings which will cause serious
problems in the design of information systems (cf. Figure 5), special education
and training is required for organization experts. In this context, we do not aim
at a simple and trivial “data / IT maturity” of an organization and its experts,
but at general abilities of employees – soft skills not depending on IT.
Among others, the following types of abilities have to be trained and
developed:

• abilities related to language communication
o ability to avoid organization-internal terminology (idiolects)
o ability to express and present one’s opinion clearly (rhetoric)

• abilities related to working in teams
o ability to carry one’s point in discussions

 21

o ability to work successfully together with experts of other
disciplines

o ability to avoid and / or solve social conflicts within teams

• abilities related to reflection and logical thinking
o ability to avoid implicit assumptions
o ability to separate standard cases from special / marginal cases
o ability to develop some sensitivity for logical problems

• abilities related to abstraction
o ability to abstract from special cases
o ability to abstract from one’s own point of view
o ability to abstract from one’s own interests

Our opinion is not far from participative strategies although it clearly
underlines the organization experts’ responsibility and thus goes far beyond
mere participation.
Vice versa, IS experts need special epistemological and communicative
trainings as well. The necessity of bilateral communicative training is taken
into consideration in modern requirements engineering approaches, such as
Rupp (2004) (cf. Section 3.2.1).
Since the IS experts carry a great responsibility as well, we can talk of a joint
responsibility. Each of the two responsibilities, however, is different as the
different types of experts have different knowledge. Organization experts have
knowledge about structures in their organization, but do not know everything
about it. Therefore, the knowledge of organization experts cannot be the only
source for the design of a future information system. Their knowledge has to be
completed with IS experts’ knowledge about formal-mathematical structures,
improvement of business processes, information processing, software and
hardware technologies (cf. Section 2.1). These knowledge aspects have to be
integrated for the benefit of the organization so that there is joint knowledge
gain (about the organization) as well.
During this bilateral knowledge acquisition, IS experts should learn a lot about
the organization. One of us (AH) is used to provoking IS experts when he
requires that they should become so familiar with the application area of their
information system that they could professionally work with it in an
organization.

22

Figure 5: Multi-perspectivity in project management

(passim on the Internet)

Figure 5 shows the consequences of misunderstandings between different
experts within a project. If the experts are not able to or do not want to build
bridges between their different points of view, their knowledge aspects cannot
be integrated to benefit the project, but conflict with each other which, in
consequence, leads to a flop of the entire project.

Members of project teams have to know that there is not only one “correct”
point of view, but many different points of view that allow interpreting the
same issue from various different perspectives. The more different points of
view are taken into consideration, the better the understanding of an issue will
be.
In Figure 6, we see a lot of persons, each one with a special personal
background and a special perspective of the forest they are in. Each statement is
totally correct with regard to the particular person’s point of view although the
statements do not have anything in common. The best description of the forest
can indeed be derived by considering the entirety of all of the statements.

 23

Figure 6: “Who sees the forest?”

(Holl & Maydt, 2007, p. 37; adapted from Hajos, 1991, p. 18)

This attitude leads to a conscious and professional treatment of multi-
perspectivity between IS experts and organization experts which is more than
mere mediation between the traditions of different cultures (ethnographic
research) (cf. Järvinen, 2001, pp. 81-87). Our ideas are described in detail in
Holl & Feistner (2006).
We understand the cooperation of IS experts and organization experts in the
sense of bilateral responsibility and bilateral knowledge gain. Therefore, we
would base the cooperative aspect of permanent knowledge gain in
organizations upon experts with different backgrounds, upon the dialectic
between organization experts and IS experts and their tasks and knowledge.
In the following section, this will become even more obvious when we connect
the second aspect of knowledge gain, the cyclic-iterative one, to the mayeutic
cycle.

24

Figure 7: Mayeutic cycle in IS and natural sciences
(according to Holl, 1999, p. 175;

cf. Helms, Arthur, Hix & Hartson, 2005, p. 850)

2.2.2 Cyclic-iterative knowledge gain: mayeutic cycle

We now base our argumentation on Section 2.1.2. The term mayeutic for the
cycle of knowledge gain (of a cognitive process) is an allusion to the maieutiké
téchne (µαιευτική τέχνη, midwifery), a technique Socrates used in combination
with his doctrine of anamnesis where he tried to show people that they can, just
by remembering, reveal unconscious knowledge when they are guided by
questions during a dialog.
The commonly better known hermeneutic cycle “is essentially a very general
model of the development of knowledge” (Radnitzky, 1970, Vol. II, pp. 23-30)
as well and contains similarities to a mayeutic cycle. Although hermeneutics is
important in IS for the interpretation of the organization experts’ statements by
IS experts (cf. Section 1.2), we prefer the mayeutic cycle. The latter can be
designed in a clearer, more transparent and more elaborate way and cannot be
associated with the inherent danger of a hermeneutic circle, that is, that the
result of an interpretation can already be part of the premises used.

 25

Figure 8: A spiral model of software development and enhancement
(adapted from Sommerville, 2001, p. 614 according to Boehm, 1988;

cf. Helms, Arthur, Hix & Hartson, 2005, p. 847)

Therefore, with regard to empiric sciences (the background of the authors),
which we consider an adequate paradigm for IS, only the concept of a mayeutic
cycle is used in this context.
The mayeutic cycle is a visualization of Kant’s unification of empirism and
rationalism. It comprises a deductive-rationalistic half (corresponding to the
synthetic phase of a software life cycle) and an inductive-empiristic half
(corresponding to the analytic phase of a software life cycle). Figure 7 shows
the mayeutic cycle in IS (according to the information system life cycle model
in Table 1) in comparison to the one in natural sciences (cf. Holl, 1999, p. 175),
the latter marked with italicized text in parentheses. The four quadrants
represent four phases, the four cardinal points represent the results of the four
phases.
The term mayeutic cycle (as the one in Figure 7) and its relation to
epistemology are widely unknown in IS. The spiral model of software
development and enhancement by Boehm (1988), however, is a model
approach similar to the mayeutic cycle. The spiral model combines elements of
both design and prototyping steps and visualizes the corresponding knowledge
gain with an increasing diameter. A simplified version of the spiral model by
Sommerville (2001, p. 164) is presented in adapted form in Figure 8.

26

Figure 9: Embedded mayeutic cycle in IS research
(adapted from Hevner, March, Park & Ram, 2004, p. 80)

The mayeutic cycle of Figure 7 is now extended to cover the approach of
design theory / design research in IS. For this purpose, the mutual connections
of IS research to its “environment” (composed of people, business
organizations and their technological support) as well as to a “knowledge base”
(a pool of foundations and methodologies provided by prior IS research and
results from other disciplines) have to be taken into consideration (Figure 9).

The cycle of Figure 7 is embedded into two “outer” (also mayeutic) cycles.
Right “outer” cycle: business needs from the environment (defined by goals,
tasks, problems or opportunities of people within organizations) are included
into IS research which develops theories and models that, in turn, can be
applied to appropriate environments.
Left “outer” cycle: applicable knowledge from a knowledge base (theories,
models, methods etc.) is included into IS research which, in turn, contributes
new or improved theories, models and methods to the knowledge base.

 27

Figure 10: Cycles of knowledge gain

28

Although not theoretically discussed in IS, mayeutic cycles are well known in
other scientific disciplines. In Figure 10, we show four of them which use
mayeutic cycles in slightly different forms:

• epistemology: joining empirism and rationalism as well as the inductive
and deductive methods (cf. Wallace, 1969 according to Järvinen, 2001,
p. 5; Riedl, 1984, p. 186, also verbally underlined by Ströker, 1987,
pp. 13-30; Davis & Hersh, 1981, p. 131).
This cycle is the theoretically most elaborate one which serves as a
template for the mayeutic cycle in IS (cf. Figure 7). The other cycles in
Figure 10 are equally oriented, with the theory (model) placed at the
north pole and the information (experience from the use) at the south
pole.

• systems theory in social and political sciences: mayeutic systems
analysis (Krauch, 1992, p. 344; cf. Krauch, 1972, p. 41)

• learning psychology: experiential learning model (from
http://www.infed.org/biblio/b-explrn.htm, originally from Kolb & Fry,
1975 according to a cyclic spiral model by Lewin, 1948, p. 206)

• empiric research methods: action research (Järvinen, 2001, p. 116
according to Susman & Evered, 1978)

All of the four approaches are correlated with a special type of learning:

• scientific learning (epistemology)

• social learning in social entities, e.g. learning organizations (systems
theory in social and political sciences, organization theory)

• individual learning (learning psychology)

• learning as problem solving (empiric research methods)

All of the four approaches are also correlated with CS / IS via:

• epistemology-based information systems modeling (epistemology)

• “socio-informatical” approaches (systems theory in social and political
sciences)

• information systems maintenance and IS teaching (learning psychology)

• empiric IS research in organizations (empiric research methods)

 29

Figure 11: Conic helix of knowledge gain

(adapted from Riedl, 1984, p. 169)

As IS experts and organization experts contribute to the permanent knowledge
gain in an organization, we can speak of a double cycle of knowledge gain.
The adaptation of Figure 4 in the center of Figure 10 shows IS experts and
organization experts who are permanently and iteratively rotating through the
different phases of the cycle of knowledge gain explained above.
As the aspect of multi-perspectivity, however, is not represented in detail in a
mere double cycle of knowledge gain (in each situation, there are several IS
experts and several organization experts), we have to refine this image.
Aggregating the individual cycles of the experts, an image similar to the rings
of Saturn can be derived for the group of IS experts as well as for the group of
organization experts: from far, one can distinguish two or three, the nearer one
gets or the better the magnification becomes, the more rings one can see. Thus,
each of the two strings of the double cycle of knowledge gain – regarded from
near – turns out to consist of several substrings representing the different
individuals on either side.

30

Stretching the cycle of knowledge gain in time, one gets a helix, and if one, in
addition, visualizes the increase of knowledge, relative to a specific domain,
with an increasing diameter, one arrives at Riedl’s conic helix (Figure 11), a
visualization used in evolutionary epistemology.
When we give Riedl’s helix two strings, representing the knowledge gain –
regarding a special problem area – of organization experts and IS experts, we
have completed our visualization of cooperative, cyclic-iterative knowledge
gain in the title. The same geometrical figure can be obtained by stretching two
superposed spirals (cf. Figure 8) in time. Regarded from close, the two strings
will of course turn out to consist of several substrings representing the
individual knowledge gain of each expert involved.
As IS experts and organization experts suffer from multi-perspectivity in
combination with the temporal dynamics of organizations, the question arises
of what can be done against the undesired consequences of this special
situation. In the following sections, we will deal with one of them, the fast
aging of information systems. If no anti-aging methods are applied, the life
cycle of information systems will be shortened extremely and, as a result, high
costs and great efforts will be required for the design and development of
completely new information systems.

 31

3. INFORMATION SYSTEMS ANTI-AGING SUPPORTED BY COOPERATIVE,

CYCLIC-ITERATIVE KNOWLEDGE GAIN

3.1 Fundamental definitions

We have defined the term (technical) information system as the software part
(technical system) of an organizational information system (cf. Section 1.2).
We refine this definition to better explain the essential connection between the
anti-aging methods – in the different phases of an information life cycle –
described in Section 3 and the cooperative and cyclic-iterative aspects of
knowledge gain in Section 2. Therefore, we locate information systems in
Lehman’s classification schema and consider the influences on them. Then we
define the term information systems aging in the context of this study.
Manny Lehman was one of the first who addressed the topic of information
systems aging. In his fundamental article (Lehman, 1980, pp. 1061-1063) he
classified three types of IT systems:

• S-type (specifiable): IT systems for problems that can be specified
formally and completely. S-type programs typically solve formal
mathematical problems. A new requirement leads to a completely new S-
type system. S-type systems are not typical for the field of IS.

• P-type (problem solution): IT systems that approximately solve a
specific, delimited complex real-world problem, such as a weather
forecast. Because of the high complexity of the problem, a solution can
never be completely specified. P-type systems do not exert an influence
on their surroundings (e.g. collection of weather data cannot directly
influence the weather) as information systems do. Therefore, they are not
of interest in IS.

• E-type (embedded): IT systems that mechanize a human or societal
activity and operate in or address a problem or activity of the real world.
An E-type system as a part of its environment re-influences its
environment. Lehman described the behavior of E-type systems in the
course of time in his “feedback systems” law: it defines E-type systems
as multi-level, multi-loop, multi-agent feedback systems. E-type systems
must be continually changed and updated, i.e. evolved. Information
systems are a subgroup of E-type systems. Therefore, we can transfer
statements about and experience with E-type systems to information
systems.

32

We will now consider the specific reasons for the aging of information systems.
As Lehman explains, E-type systems, in our case information systems, have to
be modified constantly during their lives. This is due to technical and business
reasons. Technical reasons, such as the change of the organization’s IT
environment due to performance needs or the migration of an information
system due to a merger, are relevant for P-type systems as well. Therefore, we
do not consider them in this study and confine ourselves to business reasons
which are specific for information systems. The temporal dynamics of an
organization (related to the cyclic-iterative aspect of knowledge gain), which
inevitably requires changes of its information system, is due to internal and
external business reasons.
The internal reasons include all those arising from inside the organization, such
as the change of the requirements caused by reflections and experiences with
the use of an information system.
The external reasons include all those arising from outside the organization,
such as change of laws or change of customer demands which dynamically
generate new or changed requirements. They cannot be influenced by the
organization, but affect it.
The external and internal reasons lead to changed requirements towards the
organization’s information system. If the corresponding changes are not done
consciously and professionally – this happens often – the quality of the
information system decreases. Therefore, the information system gets older,
develops “wrinkles” and becomes more difficult to maintain.
The expression “software aging” describing this situation was first introduced
by Parnas (1994, p. 280). Parnas distinguishes between:

• functional aging: a natural process which has its origin in a lack of
adaptation of software to its changed environment (“lack of movement”).

• qualitative aging: a consequence of non-professional adaptations due to
functional aging of software with decay of its internal structure
(“ignorant surgery”) so that software complexity increases faster than the
complexity of its environment.

Qualitative aging is the only interesting type of information systems aging in
our context. Therefore, we always mean qualitative aging when we speak of
aging and use the term information systems aging instead of software aging.

 33

Figure 12: Requirements and information systems life cycle

We consider it as very important to connect the ideas of Section 2 to the topic
of information systems anti-aging:

• to take care for permanent, responsible and mature cooperation of
organization experts and IS experts in information systems design (cf.
Section 2.2.1)

• to take into consideration the permanent change with the behavior of an
organization (supported with an information system) and, therefore, the
repetitive cyclic iteration of the maintenance step (consisting of an
analytic and a synthetic subphase) (cf. Sections 2.1.2 and 2.2.2)

Therefore, every anti-aging method described in this study will cover the
cooperative and / or the cyclic-iterative aspect of knowledge gain. We will
confine ourselves to those methods which counteract the specific form of aging
of information systems. The anti-aging methods are described in the order of
their first appearance in the information system life cycle (cf. Table 1). The first
anti-aging method in the life cycle is requirements engineering (cf.
Section 3.2.1) in combination with local and temporal extrapolation (cf.
Section 3.2.2). Changed requirements management (cf. Section 3.3.1) already
starts within the analytical phase, after requirements engineering, and
counteracts information systems aging during the synthetic phase. From our
point of view, the essential anti-aging method during the maintenance is change
management (cf. Section 3.4.3). Figure 12 visualizes the anti-aging methods
described in Section 3 and relates them to the information system life cycle
phases.

Local / temp.
extrapolation

34

3.2 Information systems anti-aging methods during the analytic phase

The first phase in an information system development process is the analytic
phase (cf. Table 1). Already in this phase, maintainability and changeability as
criteria of software quality have to be respected. Failures in requirements
definitions often lead to the necessity of a completely new design of entire
information systems and thus cause great efforts and costs. As the cooperation
of IS experts and organization experts is highly important especially during the
analytic phase, it is indispensable to consider it from the very beginning. For
instance, the implementation of participatory strategies (Holl, 1999, p. 195,
p. 205) can be helpful as well as the improvement of the social and cognitive
abilities of both types of experts (cf. Rupp, 2004, p. 94; cf. Section 2.2.1).
These methods, however, can only support, but not replace professional
requirements engineering.

3.2.1 Requirements engineering

Especially for the design of critical information systems, requirements
engineering has become a standard method. It should, however, be used for the
development of every information system, which is not done so far.
Prototyping is only sufficient and helpful for small information systems and
small segments of large information systems. Many IS experts and software
developers still have to be taught the advantages of requirements engineering.
Therefore, we follow the detailed argumentation in Holl (2004) and Holl &
Maydt (2007, pp. 49-51).
Requirements engineering covers, above all, the following partial tasks:
requirements acquisition, requirements definition and requirements analysis
which is the activity of identifying, formulating and validating the
requirements. Furthermore, other tasks, such as the management and adaptation
of requirements, are often mentioned. It is not considered a task of
requirements engineering to check the observance of the requirements in the
course of software development and to provide a general version management
with regard to modification (cf. Partsch, 1998, p. 20). As an independent
discipline of IS, requirements engineering is a systematic approach to the
development of requirements through an iterative process of analyzing the
problem, documenting the resulting requirements and checking the accuracy of
the understanding so gained (cf. Rzepka 1985, pp. 9-12).
Requirements are statements about the properties and performance of a product,
i.e., a requirement describes, among others, a feature to be met by a software
product. Requirements are to be systematically acquired, described, analyzed

 35

Figure 13: Life cycle of a requirement
(Holl & Maydt, 2007, p. 49; adapted from Partsch, 1998, p. 27)

and completed (cf. Rupp, 2004, p. 11). Since requirements serve as a
communication basis for all of the persons involved in the entire software
process, they should be described as completely, consistently, comprehensibly,
unambiguously and correctly as possible. All of the requirements established
during requirements analysis are recorded in requirements documents (cf.
Rupp, 2004, pp. 21-24).
Figure 13 shows the general method for the treatment of requirements and,
therefore, represents the life cycle of a requirement. The inquiry into
requirements has the aim to establish the features which a future information
system has to possess. For this purpose, methods, such as interviewing or
questioning, are used frequently. After the requirements are acquired, they are
recorded in a requirements document. Next, during requirements analysis, the
quality of the requirement descriptions is checked by verification and
validation. Verification shall find out whether a requirement description meets
certain criteria, e.g. completeness. Validation, however, shall detect whether a
requirement description represents the customer’s wishes adequately. Finally,
when accepted, the requirements are handed over to the next step in the
software process (cf. Partsch, 1998, pp. 27-37).

The main focus of requirements engineering is the mature cooperation of IS
experts and organization experts, i.e., the cooperative aspect of knowledge
gain. An advanced form of requirements engineering also considers possible
future changes, i.e., the cyclic-iterative aspect of knowledge gain (cf.
Sections 3.2.2 and 3.3.1).

36

Figure 14: Data model before local extrapolation

3.2.2 Open models: local and temporal extrapolation

According to the experience of one of us (AH), there are two advanced
methods that should also be considered during the analytic phase before the
final design (and further on during the analytic subphases of the maintenance
steps) in order to keep the design flexible:

• “Local” extrapolation regarding extensions
Do any other business activities already exist which should or could later
become the subject of an extended information system? There is no need
to program an IT support for these areas from the very beginning, but
one should include them in the information system design.

• “Temporal” extrapolation regarding modifications
Are there any expected changes in the business activities? This
information should also be considered in the information system design.

To extrapolate means “to project, extend or expand known data or experience
into an area not known or experienced so as to arrive at usually conjectural
knowledge of the unknown area”; extrapolations are not restricted to numeric
ones.
An example for local extrapolation is the database of a course information
system of a CS department at a university. In the database, information is stored
about lecturers and courses. Every course is given by exactly one lecturer.
Therefore, only two database tables are needed: one containing data about the
lecturers with an artificial Lecturer_ID as primary key and another one
containing data about courses with an artificial Course_ID as primary key and
the Lecturer_ID as foreign key (Figure 14).

This database design is absolutely correct regarding the current situation in the
CS department (one course is always given by exactly one lecturer). Let us
assume that the IS department already offers courses given by more than one

 37

Figure 15: Data model after local extrapolation

lecturer. A future extension to this department, however, will lead to serious
problems. In this case, a structural change of the database design becomes
necessary: the introduction of a third table assigning lecturers to courses and
using a combined primary key (Course_ID + Lecturer_ID) (Figure 15).

The new model is more flexible, but completely meets the original
requirements as well: if a course is given by only one lecturer, it has only one
entry in the assignment table.
Structural changes of the underlying data model of an information system lead
to extra efforts as they require single-use programs to move the data from the
old data structure to the new one. Therefore, structural changes have to be
counteracted using flexible models which apply to general situations rather than
to the current special ones only. The problem mentioned can be avoided with
early local extrapolation.
Even if the information system remains confined to the CS department, there
can be changes as well. If a future development in the CS department itself
leads to courses given by more than one lecturer, the same example illustrates
temporal extrapolation.
A well-known example for temporal extrapolation is the so-called millennium
bug (also known as year-2000-problem / Y2K-problem). In the 20th century,
some computer programs stored year data only in a two digit format. After the
turn from 1999 to 2000, these programs where not able to distinguish between
the centuries, e.g. “1900” was stored as “00” as well as 2000. The
consequences were errors in calculations, for example with regard to a person’s
age by subtracting the person’s year of birth from the current year. In the year
2000 (interpreted as “00”), the calculated age of a person born in 1968 (stored
as “68”) was negative (00 - 68 = -68) (Figure 16). An early temporal
extrapolation with the consequence of storing year data in a four digit format
would have completely avoided this problem.

38

Figure 16: Database millennium bug
(cf. http://mlecture.uni-bremen.de/intern/ws2005_2006/fb03/vak-03-

706.1/20051024/folien.pdf)

Extrapolations regarding extensions and modifications keep information system
designs more flexible and future-oriented (the cyclic-iterative aspect of
knowledge gain). Contrary to the common situation of passive reactive designs
which do not change before a change in the organization has happened, we,
therefore, support the idea of an active design. It tries to anticipate and include
future changes in an organization from the very beginning. We call the
resulting models open models.
Information about expected extensions and modifications, however, can only
be acquired by responsible cooperation of organization experts and IS experts
(the cooperative aspect of knowledge gain).
Advanced requirements engineering and extrapolation help to prevent
information systems aging already within the analytic phase during the first
design. Each of these two methods covers either of the two aspects of the
“cooperative cycle” and helps to reduce permanent corrections in the future,
which in consequence counteracts information systems aging.
In order to guarantee the success of a project and to avoid early aging, the
application of adequate methods has to be continued during the synthetic phase.

 39

Figure 17: Changed requirements gap

3.3 Information systems anti-aging methods during the synthetic phase

3.3.1 Changed (creeping) requirements management

A method that should be applied during the synthetic phase is changed
requirements management. It has to counteract a gap between the current state
of an organization and an information system at the time of its deployment.
Such a gap is due to changes in the organization’s behavior that appear during
software development after the end of requirements engineering.

Figure 17 visualizes this situation. The phases of the software life cycle are
shown on the time-axis while the requirements appear on the ordinate. The
dashed line represents the requirements defined during the analytic phase.
Usually, IS experts do not change them during software development after
requirements engineering has been finished. The continuous line (used as
simplifying visualization for a chaotic process in the real world) represents the
changes of the organization which correspond to changes of the real-world
requirements. The gap between the dashed and the continuous line visualizes
the difference between the real world and the defined requirements. If the
changing requirements (also known as creeping requirements) are not taken
into consideration during the synthetic phase, the information system is already
out of date at the time of its deployment.

40

Figure 18: Paperwork
(adapted from Dreehsen, 1996, p. 80)

A possible method for minimizing the changed requirements gap is continuous
requirements approval: after each development step the organization experts
are asked to reconfirm their requirements. Thus, a mutual cooperation of IS
experts and organization experts is essential for managing changed
requirements, i.e., the cooperative aspect of knowledge gain. The dynamics of
the real-world requirements (which results in creeping requirements)
corresponds to the cyclic-iterative aspect of knowledge gain.
Further methods for the synthetic phase will not be discussed in detail in this
study as they are not specific for information systems. Among others, there are
the use of coding conventions (on module and line level), prototyping, design
patterns, unit tests, reviews and, very often neglected, the documentation of IT
design and code (Figure 18).

 41

Figure 19: The iceberg of software maintenance

(Martin & McClure, 1983, p. 7)

3.4 Information systems anti-aging methods during maintenance

The huge part of work during maintenance in an information system life cycle
is illustrated in an excellent way in Figure 19.

The tip of the iceberg (information systems development) is well perceivable
whereas information systems maintenance is hidden under the surface of the
ocean. The maintenance of today’s information systems needs a tremendous
effort. Time and costs do not only often exceed the investment of the
development, but are also unpredictable, difficult to plan and include
incalculable surprises. Therefore, implementing and managing change of in-
house and customizable off-the-shelf information systems is a key problem for
organizations. Maintenance, however, is inevitable to keep information systems
up to date. For this reason, one should be familiar with the possible
maintenance types and the corresponding anti-aging methods specific for
information systems.

42

3.4.1 Types of information systems maintenance

According to our personal business experiences, we distinguish between
different maintenance activities. To classify them, we adopt Swanson’s three
types of software maintenance (Swanson, 1976, pp. 492-497) and a fourth type
from Kroha (1997, p. 181) and refine their definitions. Each information
systems maintenance type can be split into a technical and a business subtype
(cf. Section 3.1). Each subtype will be judged with regard to its importance for
this study.

• corrective:
o technical: maintenance performed to correct faults in hardware or

software, also known as issue management and bug fixing.
o business: maintenance performed to correct incorrectly

implemented requirements or to implement defined but not
implemented requirements.

These types are necessary for every type of IT system (e.g. P-type)
and not specific for information systems. Therefore, they are not in
the scope of this study.

• adaptive:
o technical: maintenance performed to render an information system

usable in a changed technical environment (e.g. in the environment
of a new operation system) or to add new technical functions (e.g.
multi-user functionality). This type is necessary for every IT
system (e.g. P-type), therefore, it is not in the focus of this study.

o business: maintenance performed to render an information system
usable in a changed business environment (e.g. changed
organization structure) and to meet the corresponding new
business requirements (e.g. customer demands). This type is
specific for information systems. A method of adaptive
maintenance is change management (cf. Section 3.4.3).

• perfective:
o technical: maintenance performed to improve immanent properties

of an information system, such as performance and
maintainability, without adding new functionality. A method of
perfective maintenance is, among others, reengineering (cf.
Section 3.4.4). Like every technical-perfective maintenance
method, reengineering is not specific for information systems. Due
to its tremendous practical relevance for already aged information
systems, we, however, will take it into consideration in this study.

 43

o business: maintenance performed to adjust and “polish” the
requirements. This type is not necessary if requirements
engineering is done professionally (cf. Section 3.2.1). Therefore, it
is not interesting in the context of this study.

• preventive:
o technical: maintenance performed to facilitate future technical-

adaptive maintenance activities, such as keeping the hardware
requirements of the information system flexible and independent.
This type of maintenance is reasonable for every type of system
(e.g. P-type) and not specific for information systems. Therefore,
we do not consider it in this study.

o business: maintenance performed to facilitate future business-
adaptive maintenance activities. This type of maintenance is
specific for information systems. Possible methods for business-
preventive maintenance are local and temporal extrapolation
which have already been explained (cf. Section 3.2.2).

Regarding these definitions, the maintenance types relevant in the scope of this
study are technical-perfective, business-adaptive and business-preventive
maintenance. Each maintenance type requires appropriate anti-aging methods.
The selection in this study is based on the fundamental property that each
method, except for reengineering, can be described with a mayeutic cycle
regarding the cyclic-iterative aspect of knowledge gain.
Before we describe the anti-aging methods mentioned above, we consider the
impact of technical-perfective and business-adaptive maintenance on
information systems aging. For this purpose, we regard two of Lehman’s laws
of software evolution.

3.4.2 Types of information systems maintenance and their relation to

Lehman’s laws of software evolution

Lehman’s observations in the field of software evolution over a period of 30
years led to his definition of eight laws of software evolution. These laws are
specifically related to E-type system evolution. Therefore, we can apply them
to information systems. Two of these laws describe the growth of complexity
depending on the changes in an organization.

• law of continuing growth: the functional capability of E-type systems
must be continuously increased to maintain user satisfaction over the
system lifetime (Lehman & Belady, 1972).

44

Figure 20: Increasing complexity of E-type systems over time

• law of increasing complexity: as an E-type system evolves, its
complexity increases unless work is done to maintain or reduce it
(Lehman & Belady, 1972)

Figure 20 visualizes the relation between the two laws and information systems
aging.

Due to the temporal dynamics of organizations, it is inevitable to keep
information systems up to date. This means that new functions have to be
added or old ones have to be adapted throughout the entire lifetime of an
information system. These changes, in turn, increase the information system’s
complexity and lead to its aging. Maintenance methods have to be applied to
counteract this process of aging. If maintenance methods are not applied or if
they are not applied professionally, the complexity of the information system
will increase disproportionately. The other way round, if they are applied
professionally, the complexity of the information system will grow less fast
than the complexity of the real world. These considerations apply especially to
business-adaptive maintenance.

 45

Figure 21: Mayeutic cycle of information systems maintenance

3.4.3 Change management

According to our business experiences, business-adaptive maintenance, such as
adjustments or the addition of new functionality to an information system, are
often done in a quick and dirty way: the implementation of new functions is not
based on a formalized model of the information system and its business
environment. This means that some or all of the steps between the experiences
from the use of an information system and the software development in a
mayeutic cycle (cf. Figure 7) are not performed professionally and completely
or are even skipped. This will increase an information system’s complexity and,
therefore, lead to its aging. Only if maintenance is done professionally, i.e., in a
full mayeutic cycle, it will counteract the information system’s aging.
A method of performing professional business-adaptive maintenance is called
change management. Change management is an excellent example for a full
mayeutic cycle (cyclic-iterative aspect of knowledge gain) which is repeated in
several iterations. We suppose that one cycle consists of two subphases, an
analytic one and a synthetic one, similar to the corresponding phases of an
information system life cycle (cf. Table 1).

46

The analytic subphase corresponds to the inductive half of a mayeutic cycle, the
synthetic one to the deductive half. The synthetic subphase will always collect
changes of reality, reflections upon use and new extrapolations. The analytic
subphase will analyze them and create a new model of the planned state which
will be transformed into a modified information system in the synthetic phase
(Figure 21).
Therefore, the methods of Section 3.2 also apply for the analytic subphase of a
change management cycle as well as the methods of Section 3.3 do for its
synthetic subphase. All of the methods for business-adaptive maintenance
require a close and responsible cooperation of IS experts and organization
experts (cooperative aspect of knowledge gain).
According to our business experiences, change management is not being
applied as a standard maintenance method up until now. Like requirements
engineering, many IS experts and software developers still have to be taught
the advantages of change management. Therefore, there are lots of already aged
information systems which have to be dealt with using methods of technical-
perfective maintenance, such as reengineering.

3.4.4 Information systems reengineering

Reengineering, as a method for technical-perfective maintenance, can serve as a
practical solution to reduce the complexity of already aged information
systems. The immanent technical properties of information systems will be
reorganized and modified in order to make information systems better
maintainable or to increase their performance. In contrast to the development of
a completely new information system, reengineering does not start from
scratch. That leads to a reduced risk of losing knowledge from the information
system and to reduced costs of development (Sommerville, 2001, p. 632).
Reengineering is the combination of reverse engineering, followed by forward
engineering (Chikofsky & Cross, 1990, p. 15). Figure 22 visualizes the
reengineering process. Reverse engineering can be interpreted as the analytic
half and forward engineering as the synthetic half of a mayeutic cycle.

 47

Figure 22: Reengineering process
(adapted from http://mlecture.uni-

bremen.de/intern/ws2005_2006/fb03/vak-03-
706.1/20051024/folien.pdf according to Chikofsky & Cross II, 1990)

Reverse engineering can be defined as the process of analyzing an information
system to identify its components and their interrelationships and to create
representations of the information system at higher levels of abstraction.
Reverse engineering is a process of examination, not a process of change and
replication (Chikofsky & Cross, 1990, p. 15). It can support maintenance by
reconstructing an IT design that is unknown or lost. Reconstructed
requirements can be used as an input to change management in order to modify
an information system (cf. Sommerville, 2001, pp. 636-637).
Forward engineering is the traditional process of moving from high-level
abstractions and logical, information-relevant models to the physical
implementation of an information system (Chikofsky & Cross, 1990, p. 14; cf.
Figure 22).
Although reengineering changes an information system, it does not include new
requirements nor new features and functionalities. Reengineering is usually
done by IS experts without any influence of organization experts. It, therefore,
corresponds only to the cyclic-iterative aspect of knowledge gain. Due to these
limitations, one should prefer a professional maintenance method such as
change management that consists of a full mayeutic cycle, instead of a method
that only repairs the undesired consequences of earlier mistakes and non-
professional work.

48

4. CONCLUSION

With regard to information systems modeling, we have underlined two main
features of organizations: their temporal dynamics (cyclic-iterative aspect of
knowledge gain) and their behavior as social systems where observation is
accompanied by mutual influence of observer and observandum (cooperative
aspect of knowledge gain), resulting in multi-perspective observation. Based
upon these two aspects, we have developed our interpretation of permanent
knowledge gain using the concept of mayeutic cycles. A conic double helix
turns out to be an excellent visualization for professional information systems
maintenance.
Our focus is not software maintenance in general, but information systems
maintenance in particular, with emphasis on professional adaptive maintenance.
The anti-aging methods discussed have been presented with respect to our
interpretation of permanent knowledge gain (containing the two aspects multi-
perspectivity and temporal dynamics) as each of the selected methods is
connected to at least one of the two aspects mentioned.
In order to avoid information systems aging, information systems have to be
developed and maintained in a professional way. Therefore, essential
prerequisites are, among others:

• application of methods representing full mayeutic cycles including an
analytic phase (e.g. change management, requirements engineering)

• application of methods requiring and encouraging the responsible and
effective cooperation of IS experts and organization experts (e.g. change
management, requirements engineering, local and temporal
extrapolation, changed requirements management)

Some of the methods introduced (as requirements engineering, local and
temporal extrapolation or changed requirements management) are not well
known in IS theory so far, others are interpreted in a new way (e.g. change
management as the sum of all activities of professional business-adaptive
maintenance, or information systems reengineering as an auxiliary technique in
case of inadequate change management).

 49

5. REFERENCES

Bhaskar, R. (1989). Reclaiming reality. London: Verso.
Boehm, B. W. (1988). A spiral model of software development and
enhancement, IEEE Computer, 21(5), 61-72.
Bülow, V. von (1968). Loriots großer Ratgeber. Zürich: Diogenes.
Castelli, V., Harper, R. E., Heidelberger, P., Hunter, S. W., Trivedi, K. S.,
Vaidyanathan, K. et al. (2001). Proactive management of software aging. IBM
Journal of Research and Development, 45(2), 311-332.
Checkland, P. (1981). Systems thinking, systems practice. Chichester: John
Wiley and Sons.
Chikofsky, E. J. and Cross II, J. H. (1990). Reverse engineering and design
recovery. A taxonomy. IEEE Software, 7(1), 13-17.
Churchman, C. W. (1979). The system approach and its enemies. New York:
Basic Books.
Churchman, C. W. (1971). The design of inquiring systems. New York: Basic
Books.
Curth, M. A. and Giebel, M. L. (1989). Management der Software-Wartung.
Stuttgart: Teubner.
Davis, P. J. and Hersh, R. (1981). The mathematical experience. Boston, Mass.:
Birkhäuser.
Dreehsen, B. (1996). Qualitätssicherung bei EDV-Systemen. Auswahl, Einsatz
und Betrieb von Hard- und Software gemäß DIN/ISO 9000. Berlin: Springer.
Eisner, P. (1988). Strukturierte Software-Wartung. Zürich: Zentralstelle der
Studentenschaft. (Doctoral dissertation, University of Zürich, 1987).
Flensburg, P. and Friis, S. (1999). Mänskligare datasystem: Utveckling,
användning och principer. Lund: Studentlitteratur.
Goorhuis, H. (1994). Konstruktivistische Modellbildung in der Informatik.
(Doctoral dissertation, University of Zürich, 1994).
Hajos, A. (1991). Einführung in die Wahrnehmungspsychologie. Darmstadt:
Wissenschaftliche Buchgesellschaft.
Heidegger, M. (1962). Being and time. New York: State University of New
York.
Heinemann, K. (1987). Software-Wartung. Ein modellgestützter Ansatz zur
Planung von Software-Wartungsstrategien. Münster: Lit.

50

Helms, J. W., Arthur, J. D., Hix, D. and Hartson, H. R. (2006). A field study of
the wheel – a usability engineering process model. Journal of Systems and
Software, 79, 841-858.
Hevner, A. R., March, S. T., Park, J. and Ram, S. (2004). Design science in
information systems research. MIS Quarterly, 28(1), 75-105.
Hirschheim, R. and Klein, H. K. (2003). Crisis IS field? A critical reflection on
the state of the discipline. Journal of the Association for Information Systems
(JAIS), 10(4), 237-293.
Holl, A. and Maydt, D. (2007). Epistemological foundations of requirements
engineering. In Erkollar, A. (Ed.), Enterprise and business management. A
handbook for educators, consulters and practitioners (pp. 31-58). Marburg:
Tectum.
Holl, A. and Feistner, E. (2006). Mono-perspective views of multi-perspectivity:
Information systems modeling and ‘The blind men and the elephant’. Växjö:
Växjö University Press.
Holl, A. (2004). Erkenntnistheorie, (Wirtschafts-)Informatik und Requirements
Engineering. In Rupp, C., Requirements-Engineering und -Management –
Professionelle, iterative Anforderungsanalyse für die Praxis (3rd ed.) (pp. 13-
15). München: Hanser.
Holl, A. and Auerochs, R. (2004). Analogisches Denken als Erkenntnisstrategie
zur Modellbildung in der Wirtschaftsinformatik. In Frank, U. (Ed.),
Wissenschaftstheorie in Ökonomie und Wirtschaftsinformatik. Theoriebildung
und -bewertung, Ontologien, Wissensmanagement (pp. 367-389). Wiesbaden:
DUV.
Holl, A. and Valentin, G. (2004). Structured business process modeling.
Information Systems Research in Scandinavia (IRIS’27), CD-ROM.
Falkenberg, Sweden.
Holl, A. and Krach, T. (2002). Ubiquitäre IT – ubiquitärer naiver Realismus. In
Britzelmaier, B. et al. (Eds.), Der Mensch im Netz. Ubiquitous Computing. -
4. Liechtensteinisches Wirtschaftsinformatik-Symposium an der FH
Liechtenstein (pp. 53-69). Stuttgart: Teubner.
Holl, A., Krach, T. and Mnich, R. (2000). Geschäftsprozessmodellierung und
Gestalttheorie. In Britzelmaier, B. et al. (Eds.), Information als Erfolgsfaktor.
2. Liechtensteinisches Wirtschaftsinformatik-Symposium an der FH
Liechtenstein (pp. 197-209). Stuttgart: Teubner.
Holl, A. (1999). Empirische Wirtschaftsinformatik und evolutionäre
Erkenntnistheorie. In Becker, J. et al. (Eds.), Wirtschaftsinformatik und
Wissenschaftstheorie. Bestandsaufnahme und Perspektiven (pp. 163-207).
Wiesbaden: Gabler [English version ‘Information systems as empirical science

 51

and evolutionary epistemology’ on Alfred Holl’s homepage via
http://www.ohm-hochschule.de].
Holl, A. and Scholz, M. (1999). Objektorientierung und Poppers Drei-Welten-
Modell als Theoriekerne der Wirtschaftsinformatik. In Schütte, R. et al. (Eds.),
Wirtschaftsinformatik und Wissenschaftstheorie. Grundpositionen und
Theoriekerne. Arbeitsbericht 4 des Instituts für Produktion und industrielles
Informationsmanagement (pp. 91-105, 168-169). Essen: Universität.
Järvinen, P. (2001). On research methods. Tampere: Tampereen
Yliopistopaino.
Jones, C. (1996). Strategies for managing requirements creep. IEEE Computer,
29(6), 92-94.
Klein, H. K. and Myers, M. (1999). A set of principles for conducting and
evaluating interpretive field studies in information systems. MIS Quarterly,
23(1), 67-97.
Kolb. D. A. and Fry, R. (1975). Towards an applied theory of experiential
learning. In Cooper, C. L. (Ed.), Theories of group processes. London: John
Wiley.
Krauch, H. (1992). Systemanalyse. In Seiffert, S. and Radnitzky, G. (Eds.),
Handlexikon zur Wissenschaftstheorie (pp. 338-344). München: Deutscher
Taschenbuch-Verlag.
Krauch, H. (1972). Wege und Aufgaben der Systemforschung. In Krauch, H.
(Ed.), Systemanalyse in Regierung und Verwaltung (pp. 27-47). Freiburg:
Rombach.
Kroha, P. (1997). Softwaretechnologie. München: Prentice Hall.
Lehman, M. M. (1980). Programs, life cycles and laws of software evolution.
Proceedings of the IEEE, 68(9), 1060-1076.
Lehman, M. M. and Belady, L. (1972). An introduction to program growth
dynamics, statistical computer performance evaluation. In Freiburger, W. (Ed.),
Statistical computer performance evaluation (pp. 503-511). New York:
Academic Press.
Lehman, M. M. (1969). The programming process. Yorktown Heights, NY:
IBM Res. Rep. RC 2722.
Lehner, F. (1991). Software-Wartung. Management, Organisation und
methodische Unterstützung. München: Hanser.
Lehner, F. (1989). Nutzung und Wartung von Software. Das
Anwendungssystem-Management. München: Hanser.

52

Lewin, K. (1948). Resolving social conflicts: Selected papers on group
dynamics. New York: Harper and Row.
Lorenz, K. (1978). Behind the mirror – A search for a natural history of human
knowledge. New York: Harcourt Brace Jovanovich.
Lorenz, K. (1962). Kant’s doctrine of the a priori in the light of contemporary
biology. General systems, 7, 23-35 (= Kant’s doctrine of the a priori in the
light of contemporary biology. In Bertalanffy, L. von and Rapoport, A. (Eds.),
Yearbook of the Society for General Systems Research (pp. 23-35)) (Reprinted
in Evans, R. (1975), Konrad Lorenz: The man and his ideas (pp. 181-217).
Reprinted in Plotkin, H. (1982), Learning, development and culture (pp. 121-
143).)
Lorenz, K. (1962). Gestalt perception as fundamental to scientific knowledge.
General systems, 7, 37-56 (= Gestalt perception as fundamental to scientific
knowledge. In Bertalanffy, L. von and Rapoport, A. (Eds.), Yearbook of the
Society for General Systems Research (pp. 37-56).)
Martin, J. and McClure, C. (1983). Software maintenance: The problem and its
solution. Englewood Cliffs, New Jersey: Prentice-Hall.
Nissen, Hans Erik (2002). Challenging traditions of inquiry in software
practice. In Dittrich, Y. et al. (Eds.), Social thinking – software practice
(pp. 69-89). Cambridge, Mass.: MIT Press.
Parnas, D. L. (1994). Software aging. Proceedings of the 16th International
Conference on Software Engineering (ICSE) (pp. 279-287). Los Alamitos, CA:
IEEE Computer Society Press.
Partsch, H. (1998). Requirements Engineering systematisch – Modellierung für
softwaregestützte Systeme. Berlin: Springer.
Popper, K. R. and Eccles, J. C. (1981). The self and its brain. New York:
Springer International.
Popper, K. R. (1972). Objective knowledge – An evolutionary approach.
Oxford: Clarendon.
Radnitzky, G. (1970). Contemporary schools of meta-science (2nd ed.). New
York: Humanities Press and Gothenburg: Akademiförlaget
Riedl, R. (1984). Biology of knowledge. The evolutionary basis of reason.
Chichester: Wiley.
Rupp, C. (2004). Requirements-Engineering und -Management –
Professionelle, iterative Anforderungsanalyse für die Praxis (3rd ed.).
München: Hanser.
Russell, B. (1927). An outline of philosophy. London: George Allen and Unwin.

 53

Rzepka, W. E. and Ohno, Y. (1985). Requirements engineering requirements:
Software tools for modeling user needs. IEEE Computer (special issue), 18(4),
9-12.
Schmidt, B. (1993). Simulation in Passau, 2, 12.
Schmidt, H. (1982). Philosophisches Wörterbuch (21st ed.). Stuttgart: Kröner.
Sneed, H. M. (1992). Softwarewartung und -wiederverwendung. Bd. II:
Softwaresanierung (Reverse und Reengineering). Köln: Rudolf Müller.
Sneed, H. M. (1991). Softwarewartung und -wiederverwendung. Bd. I:
Softwarewartung. Köln: Rudolf Müller.
Sommerville, I. (2001). Software engineering (6th ed.). München: Pearson
Studium.
Steinmüller, W. (1993). Informationstechnologie und Gesellschaft: Einführung
in die angewandte Informatik. Darmstadt: Wissenschaftliche Buchgesellschaft.
Ströker, E. (1987). Einführung in die Wissenschaftstheorie (3rd ed.).
Darmstadt: Wissenschaftliche Buchgesellschaft.
Susman, G. I. and Evered, R. D. (1978). An assessment of the merits of
scientific action research. Administrative Science Quarterly, 23(4), 583-603.
Swanson, E. B. (1976). The dimensions of maintenance. Proceedings of the
IEEE/ACM Second International Conference on Software Engineering
(pp. 492-497).
Ulrich, H. and Probst, G. J. B. (Eds.) (1984). Self-organization and
management of social systems: insights, promises, doubts and questions.
Berlin: Springer.
Vollmer, G. (1992). Evolution and projection – Approaches to a modern
epistemology. Universitas 34(2), 114-126.
Vollmer, G. (1990). Evolutionäre Erkenntnistheorie (5th ed.). Stuttgart: Hirzel.
Vollmer, G. (1987). What evolutionary epistemology is not. In Callebaut, W.
and Pinxten, R. (Eds.), Evolutionary epistemology – A multiparadigm program
(pp. 203-221). Dordrecht: Reidel.
Wallace, W. L. (1969). Sociological theory. Chicago: Aldine.

54

BIOGRAPHIES

Alfred Holl
Born 1956. Studies of mathematics and linguistics in
Regensburg, Germany. Dr. phil. Development of information
systems in business and administration.
Since 1990 professor for information systems at the Department
of Computer Science and Information Systems, Georg Simon
Ohm University of Applied Sciences of Nuremberg, Germany.
2005-2008 visiting professor for information systems at the
School of Mathematics and Systems Engineering, University of
Växjö, Sweden.
Research fields: information systems modeling based upon
epistemology (evolutionary epistemology, critical realism,
moderate constructivism); inflectional morphology and data
mining.

Felix Paetzold
Born 1976. Studies of computer science at Georg Simon Ohm
University of Applied Sciences of Nuremberg, Germany.
Master’s degree in computer science.
Special subject: SAP.
Department of Information and Communication, City of
Nuremberg, Nuremberg, Germany

Robert Breun
Born 1979. Studies of computer science at Georg Simon Ohm
University of Applied Sciences of Nuremberg, Germany.
Master’s degree in computer science.
Special subject: IT organization.
IT Department, Bruder Spielwaren GmbH + Co. KG, Fürth,
Germany

