Problem structuring (and: structuring the problem solving process) Problem decomposition, "divide and conquer" method

1 Decomposition into solved and unsolved partial problems

1.1 Reference models and analogic transfer

1.2 Partially analogous reference models

1.3 Two sources of model construction

1.4 First, solution for standard cases and, then, for exceptional cases

2 Parallel decomposition: into simultaneous partial problems

2.1 Horizontal decomposition: same level of abstraction

2.2 Vertical decomposition: different levels of abstraction

3 Sequential decomposition: into a sequence of partial problems (steps)3.1 Software (development) process

4 Inductive "decomposition": into many individual cases

4.1 Cyclic inductive-deductive refinement

5 Problem structuring in a master's thesis

5.1 Network modeling

5.2 Method matrix

A problem is a question of definition

Mathematician / physicist / chemist etc. gets a fence and the task: "catch a lion (or a flock of sheep) in an enclosure made of the fence" What happens?

(different versions on the web)

A problem is a question of definition

multi-perspectivity of IS experts and organization / domain experts (ethnography)

Systems are relative to perspectives (adapted from Steinmüller 1993, 168)

<u>1 Decomposition into solved and unsolved partial problems</u> (parallel and sequential)

First, a mathematician / physicist gets an empty bucket and a tap and the task: "fill the bucket with water"

Then, the mathematician / physicist gets a bucket full of water and a tap and the same task: "fill the bucket with water"

What happens?

Reduction to an already solved problem

1.1 Reference models and analogic transfer

Here for data models; applies for process models as well

creditor	debtor	umbrella terms generic model	
supplier groups	customer groups	business partner gr.	
\downarrow	\downarrow	\downarrow	
suppliers	customers	business partners	
\downarrow	\downarrow	\downarrow	
outgoing orders	incoming orders	orders/contracts	
\downarrow	\downarrow	\downarrow	
order lines	order lines	order lines	
\uparrow	↑	\uparrow	
raw materials	products	items	
↑	\uparrow	↑	
material groups	product groups	item groups	

\rightarrow one-to-many relationship

Cf. class models: generalization and specialization of models

1.2 Partially analogous reference models

Complete model analogies are rare. Split a problem into a solved and an unsolved partial problem.

Example 1: Number of order lines

orders with only one order line vs. orders with more order lines

customers	\rightarrow	orders	\rightarrow	order lines	←	products
library users		-		borrow		books
				transactions		

Example 2: Individual identifiability of items individually identifiable items (library books, cars) vs. not individually identifiable items

borrow transactions	←	books (copies)	←	books (titles)
order lines		-		products

1.3 Two sources of model construction

Starting from reality: <u>empiristic</u> method/approach <u>observation and interviews</u> of employees by a model designer (contrary to natural sciences: only observation) abstraction, inductive type construction

often used for individual parts of an organization

Starting from models, concepts, ideas: <u>rationalistic</u> method reference models <u>activation</u> in a model designer's brain analogic transfer

often used for standard parts of an organization, e.g. accounting

Final step: integration of individual and reference models

1.3 Two sources of model construction

external		phenomenoi	1,	model,
world	individual experience			theory
\downarrow		↓ _		\downarrow
World 1		World 2		World 3
objects	knowle	edge of an in	dividual	common
of cognition	sub	ject of cogni	ition	knowledge
	perception, cognitive processes (empiristic) ↓ <u>reconstruction</u> of World 1 →	<u>memory</u>	learning rationalistic ↓ <u>activations</u> of World 3 ←	
	creation, induction			
←	design, ← influence	- new ideas knowledg	, 1	\rightarrow

1.4 First, solution for standard cases and, then, for exceptional cases

<u>Lab problem</u>: Process description: acceptance of an order at the phone text, optionally with a diagram

describe your assumptions regarding the company
higher abstraction level: standard process (reference model)
lower abstraction level: details of the standard process
lower abstraction level: exceptions (observation)

Take care of exact correlations between 2, 3 and 4 Presentation as table with three columns for 2, 3 and 4

2 Parallel decomposition

Lab problem:

Normalization and integration (with overlaps) of partial data models (assume that the invoice data is stored in a separate accounting IT system)

Orders	Sales representatives	Item statistics
(sales department):	(marketing dept.):	(controlling dept.):
CustomerID	SalesRepID	ItemID
CustomerName	SalesRepProvision	StatisticYear
CustomerAddress	CustomerID	StatisticMonth
OrderNo	CustomerName	Turnover
OrderDate		
ItemID		
ItemDescription		
PricePerUnit		
Quantity		

2.1 Horizontal decomposition: same level of abstraction

	Static models	Dynamic models
Data	Data (structure) models:	Information flow models:
models	data structure diagrams; entity-relationship models (ERM); UML class diagrams	information / data flow charts / diagrams; Structured Analysis (SA); UML use case diagrams
Function models	Function structure models : compositional function trees; Jackson trees	•

2.2 Vertical decomposition: different levels of abstraction

2.2 Vertical decomposition: software process as a tree model

2.3 Summary: horizontal and vertical decomposition

3 Sequential decomposition

<u>Geometric problem</u>: Transform an arbitrary quadrilateral into a square with equal area

Steps:

- 1. quadrilateral \rightarrow triangle
- 2. triangle \rightarrow isosceles triangle (equal legs)
- 3. isosceles triangle \rightarrow rectangle
- 4. rectangle \rightarrow square (triangle altitude theorem)

<u>Network modeling</u> for project management Example: see 5.1

3.1 Sequential decomposition: software (development) process

Main phase	Subphase, model level	Methods (ex.)
Analytic phase:	Elicitation of the current state of the org	Systems analysis, Reverse engineering
problem analysis	Analysis of the current state of the organization	Requirements engineering, OOA
	Design of the planned state of the org. (sociotechnical IS)	Requirements engineering, BPM
	Design of the business concept of the IT system (technical IS)	Reference mod., test case description
Synthetic phase:	Design of the techn. concept of the IT system independ. of developm. tool	OO design, design patterns
IT system develop-	depending on development tool Programming	Unit tests Coding conv.,
ment		agile programming
	Test	V model tests

3.1 Sequential decomposition: software (development) process

On its way through a software (development) process, a model of a technical IS has to be transferred in several steps via different models,

each of which in turn is split vertically and horizontally,

from an organization / enterprise model on the information level to a technical model on the implementation level.

Every software process phase represents a certain perspective (diaphasic multi-perspectivity)

3.2 Summary: horizontal, vertical and sequential decomposition

4 Inductive "decomposition": into many individual cases

Find a general formula for the sum of natural squares.

Find solutions for individual cases (there are no standard cases)
Generalize these solutions

$$1^2 = 1$$

$$1^{2} + 2^{2} = 5$$
; is the sum equal to $\frac{n \cdot (n^{2} + 1)}{2}$?
 $1^{2} + 2^{2} + 3^{2} = 14$
 $1^{2} + 2^{2} + 3^{2} + 4^{2} = 30$

As there are *n* summands, the biggest of which is n^2 , the solution has the order n^3 and a good starting point is:

$$\sum_{j=1}^{n} j^2 = an^3 + bn^2 + cn + d$$

which leads to four cubic equations in four variables (difficult!).

Solution:

$$\sum_{j=1}^{n} j^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$$

Proof with mathematical induction.

4.1 Cyclic inductive-deductive refinement

5.1 Problem structuring in a master's thesis: network modeling

5.2 Problem structuring in a master's thesis: method matrix

Description / motivation of the structure (from where? how? where?)

- Starting point of your thesis: what do we know? Where are the problems? Clear description of research questions / scientific issues
- Exact definition of the objectives (to answer the research questions), description of your task in detail; motivation: what is the purpose of your thesis? What are you aiming at? Objectives: reachable, pragmatic, not too optimistic / high / broad
- Motivation of the selection of the methods used and the way how the methods are applied (how shall the objectives be reached) and motivation of the use of particular methods.

5.2 Problem structuring in a master's thesis: method matrix

	Where from?	Where?	How?	What?
	Starting point	Definition of	Methods	(Form of the)
	scientific issues	the objectives	(and their use)	Results
Entire thesis				
Chapter 1				
Chapter 2				
Chapter 3				
etc.				

<u>6 Appendix</u>

<u>6.1 Function point method</u>: weighted aspects (pros, cons)

6.2 Decision table

<u>6.3 Examination of the context / environment of a problem</u> (Ex.: improve the purchase processes ...)

Etc. etc.