Alfred Holl

Epistemology and methodology in enterprise modeling and information systems modeling

Brief description

Epistemology is the branch of philosophy which deals with the acquisition (cognitive processes), nature and limits of knowledge, especially scientific knowledge, such as formal (mathematical) models. Models of that kind inevitably form the necessary basis for business information systems.

Regarding Information Systems as an empirical science, the formal models used are the results of cognitive processes which always lead to a difference and a conflict between reality and model. Every computer scientist should be aware of this fact and renounce naïve realism, that is, the assumption of a one-to-one correspondence between reality and model, in favor of positions which are of special value for the epistemological judgment of information systems modeling.

Although there is no single all-encompassing result, which can be formulated in one sentence, there are a lot of partial results. In essence, we can say that while it is true that knowledge of epistemological connections does not eliminate the fundamental epistemological problems, it does, however, considerably reduce their undesired effects.

Detailed texts and slides in English are available on my homepage http://www.informatik.fh-

nuernberg.de/professors/holl/Personal/HollHome.htm via the link "Publications and Manuscripts".

Contents

Epistemology	Information systems issue
1 Epistemological issues of	Epistemological judgment
modeling:	of IS models and the
relation between reality and	circumstances of their design
models, model designers	
2 <u>Multi-perspectivity</u> in	Horizontal, vertical, diaphasic
modeling:	decomposition
aspects of models,	inter-model errors, model
formal and natural language	balancing
3 Principles of modeling:	Relation between IS and
model levels,	business,
model purposes,	modeling on business and IT
structuring of a modeling	(design) levels,
process	model purposes, phase
	concepts
4 <u>Popper</u> 's epistemological	Difference reality – model,
meta-model	model designers
5 <u>Epistemological approaches</u> :	Selection of an adequate
critical realism, evolutionary	epistemological approach for
epistemology, constructivism,	IS modeling
epistemological step model	
6 <u>Empiristic approaches</u> to	Systems analysis and
modeling:	requirements engineering in
formal models, structured	iterative software life cycle
cognitive (knowledge-acquiring)	models (phase concepts),
processes (induction, deduction,	starting points for modeling
mayeutic cycle)	
7 <u>Rationalistic approaches</u> to	Generic models,
modeling:	reference models
analogical thinking and type	
construction	

(8 <u>Problem / systems analysis</u> :	Details of the analytical phase
problem of isolation,	in a phase concept of IS
qualities of the object of	development,
cognition	requirements engineering,
(in-homogeneity, heteronomy,	pre-formalization, effort for
temporal dynamics, chaotic	formalization,
behavior)	accessibility / suitability to
	formalization / structuring
(9 <u>Meta-models</u> of modeling	Meta-models of IS modeling
approaches	approaches,
from different perspectives	notations of IS modeling
	approaches
10 Structured behavioral	Structured business process
<u>models</u> ,	modeling,
theory of gestalt	feature-oriented business
	process models
11 Cooperative cyclic	Information systems anti-
knowledge gain:	aging,
empirism and rationalism	Software Evolution (Manny
joined in a mayeutic cycle	Lehman), SW maintenance,
	changed requirements
	management,
	open models
12 Research methods	IS research methods,
	qualitative and quantitative
	methods,
	design theory, action research,
	interactive research etc.
13 Guidelines for scientific	Preparation for the D-thesis
papers	

1 Epistemological issues

The modeling process without epistemological foundation (McMenamin / Palmer, Essential Systems Analysis, 1984, 54)

- 1) Essential problems of modeling, cognitive dilemmas
- 2) Properties of the object of cognition (enterprise)
- 3) Properties of the subject of cognition (model designer)
- 4) The mutual influence (interaction) of subject and

object of cognition (model designer and enterprise)

1) The problem of isomorphy

Girl and globe (Quibeldey-Cirkel, Objekt-Paradigma, 1994, 15)

4) The influence of model designers on the enterprises observed

Ethologist and mole (Loriots großer Ratgeber, 1968, 219 quoted from Schmidt, Simulation in Passau, 1993, 2, 12)

2 Multi-perspectivity

Forest (Hajos, Wahrnehmungspsychologie, 1991, 18)

Model of the solar system by Tycho Brahe (1546-1601) (Fuchs, Bevor die Erde sich bewegte, 1975, 140)

Exemplary story of 'The blind men and the elephant'

3 Principles of modeling

A good IS and its application area fit together like key and lock:

lock: organization level

key: information-relevant IS level

key: implementation-relevant IS level

An IS cannot cure the disastrous management of an organization. <u>A straight key cannot be put into a crooked lock</u>.

main phase	subphase	model level	model purpose
analytical phase: problem analysis	elicitation of the current state of the organization analysis of the current state of the organization	information- relevant models	descriptive models (systems analysis)
	design of the planned state of the organization (LOCK) design of the business concept of the IS (KEY)		prescriptive models (require- ments engineering)
synthetical phase: IT system development	design of the technical concept of the IS programming test	implementa- tion-relevant models	
maintenance	use	information- relevant models	

4 Popper's epistemological meta-model

(Holl / Krach, Ubiquitärer naiver Realismus, 2002, 54)

To better understand Popper's idea of World 2: Müller-Lyer's optical illusion (Rock, Wahrnehmung, ***, 139)

"Hand-made" diagram showing the epistemological situation

5 Epistemological approaches

(Holl / Maydt, Epistemological foundations of RE, 2007, ***)

Relation reality – model	Epistemological approach	Scope in a step/layer model
1 to 1	naive realism	simple objects in the physical world
a certain	critical realism, moderate constructivism	complex objects, optical illusions, sub-atomic particles, enterprises, economy, human society
	evolutionary epistemology	special explanatory value
no	radical constructivism	speculations, psychiatry

Discrete epistemological step model: simplest adequate approach; can be replaced by a continuous model (no hard boundaries)

Every (re-)construction (interpretation) of reality is determined by <u>biological and social norms of perception</u> and, therefore, always contains some <u>constructed part</u>. Example: color blindness

Ishihara table

(Holl / Maydt, Epistemological foundations of RE, 2007, ***)

6 Empiristic approaches

	natural sciences	IS
object of examination	object of cognition in the nature	information handling processes in enterprises
manner of examination	observation	observation
utilization of the observation results	process of model construction	process of model construction
result of the process of model construction	formal model: formula	formal model: data model, information flow model, business process model
direct purpose	mathematical description	construction of system designs for IS
indirect use	explanation, understanding	optimization of information handling processes
transferability	prediction	reference models

Mayeutic cycle in IS and natural sciences (Holl / Paetzold / Breun, IS anti-aging, 2008)

Prof. Dr. Alfred Holl, Georg Simon Ohm University of Applied Sciences, Nuremberg, Germany, 12.02.08/15

Cognitive processes in IS modeling (Holl / Maydt, Epistemological foundations of RE, 2007, 53)

level	partly methodic, partly structured	epistemology- based	epistemological foundation
eliciting the current state	systems analysis	(missing)	systems theory
designing the planned state	business concept modeling	requirements engineering	linguistics, psychology,

Cognitive methods in information systems (Holl / Maydt, Epistemological foundations of RE, 2007, 54)

7 Rationalistic approaches

external	phenomenor	1,	model,
world	individual exper	ience	theory
\downarrow	↓		Ļ
World 1	World 2		World 3
objects of	knowledge of an inc	dividual	common
cognition	subject of cogni	ition	knowledge
	perception, cognitive processes (empiristic) ↓ <u>reconstruct.</u> of World 1 →	learning rationalistic ↓ <u>activations</u> of World 3 ←	
←	$\downarrow \\ creation, induction \\ \downarrow \\ design, \leftarrow new ideas, \rightarrow publi- \\ influence knowledge cation \\ \end{tabular}$		\rightarrow

Two sources for model construction in IS

Analogical thinking and perception of gestalt: assignment of individuals to a type using key features (Wuketits, Entdeckung des Verhaltens, ***)

creditor	debtor	umbrella terms generic model
supplier groups	customer groups	business partner gr.
\downarrow	\downarrow	\downarrow
suppliers	customers	business partners
\downarrow	\downarrow	\downarrow
outgoing orders	incoming orders	orders/contracts
\downarrow	\downarrow	\downarrow
order lines	order lines	order lines
\uparrow	\uparrow	\uparrow
raw materials	products	items
\uparrow	\uparrow	\uparrow
material groups	product groups	item groups

Example for a reference model (→ one-to-many relationship)

10 Structured behavioral models

(Scheer, Business Process Engineering, 1994, 404)

Contro	l flow modeling styles	BPM s	tyles
1950s 1960s	Spaghetti code programming and spaghetti design	late 1980s	Spaghetti BPM
early 1970s	Structured programming and structured design	2005 ?	Desire: Structured BPM (not only in WFM)

Historic comparison (Holl / Valentin, Structured BPM, 2004)

Umbrella term	BPM	Control flow modeling
Sequence	sequence	sequence
Test, alternative,	XOR	IF
decision		
Iteration	cycle	loop
Event	business event	operating system event, interrupt
Process unit	business activity	instruction or block of instructions
Modular substructure	partial process	subprogram, subroutine
Simultaneity	AND	parallel functions

Analogy (umbrella terms) of the elementary components of BPM and control flow modeling (Holl / Valentin, Structured BPM, 2004)

Umbrella term	Structure diagram (DIN 66 261) according to Nassi- Shneiderman	Control flow chart (DIN 66001)	Control flow chart: extensions of DIN 66001	Event driven process chain (EPC)
Modular substructure				
Sequence				
Alternative, decision				
Iteration: DO-WHILE, REPEAT- UNTIL, WHILE				No symbol
Event	No symbol	No symbol		
Process unit				

Analogy of the notations of BPM and control flow modeling (Holl / Valentin, Structured BPM, 2004)

A man's face to a woman's body (Riedl, Begriff und Welt, 1987, 74-77)

Splitting of a process according to changes of features (Riedl, Begriff und Welt, 1987, 195)

Sub-processes	Values of the feature "order status"
Order acceptance check	To be checked
Order data recording	To be recorded
Invoicing	To be invoiced
Commissioning	To be commissioned
Shipping	To be shipped

Sub-processes and their feature values

Changes of a feature visualized as mathematical step function (Holl / Krach / Mnich, Geschäftsprozessmod., 2000, ***)

11 Cooperative cyclic knowledge gain

Cycles of knowledge gain (Holl / Paetzold / Breun, IS anti-aging, 2008)

Embedded mayeutic cycle in IS research (adapted from Hevner / March / Park / Ram, Design science, 2004, 80)

Lehmann's E-type system / program (Kaiser / Reminger, [seminar paper,] 2006)

Increasing complexity of E-type systems (Holl / Paetzold / Breun, IS anti-aging, 2008)

12 Research methods

Main methods (91%)

Deductive by reasoning (using natural language) Case study (including ethnography) Prototyping Quantitative-empiric Conceptional-deductive (in semi-formal models) Formal-deductive (in mathematical model)

Side methods (9%)

Reference modeling Qualitative-empiric (including grounded theory) Lab / field experiment Simulation Action research

Differences between Information Systems Research and German Wirtschaftsinformatik

Wilde, Thomas; Hess, Thomas: Forschungsmethoden der Wirtschaftsinformatik. Eine empirische Untersuchung. Wirtschaftsinformatik 49(2007) 280-287

13 Guidelines for a method report

The focus of

a method report in an information systems master's program are <u>scientific methods</u> relevant in the field of information systems.

What is the <u>purpose</u> of scientific methods? Scientific methods (techniques) are used in order to find answers and solutions (goal) to scientific issues / questions / problems (starting point).

There are different possibilities to choose a subject for a method report:

1 In the framework of an information systems master's thesis: describe the scientific issues and the methods you use to arrive at answers and solutions.

2 Describe a scientific issue relevant for information systems and methods to answer / solve it.

3 Describe a scientific discipline / approach / theory relevant for information systems, its issues and the methods it uses.

4 Describe a scientific method relevant for information systems and possible scientific issues where it can be used.

Important:

Mention type of your report and describe the structure of your report in the introduction.

Give a clear definition of the scientific issue you consider. Use simple vocabulary and simple syntax in English.

Read my guidelines for theses on my homepage carefully.

References to my own publications

pdf-files of my own publications: see my homepage.

Holl, Alfred:
<u>Empirische Wirtschaftsinformatik und evolutionäre</u>
<u>Erkenntnistheorie [Information systems as an empirical science and evolutionary epistemology]</u>.
In: Becker, Jörg et al. (ed.): Wirtschaftsinformatik und
Wissenschaftstheorie. Bestandsaufnahme und Perspektiven.
Wiesbaden: Gabler 1999, 163-207, ISBN 3-409-12002-5.
<u>English translation</u> on my homepage.

Holl, Alfred; Paetzold, Felix; Breun, Robert: *The role of cooperative cyclic knowledge gain in IS anti-aging*. [= Rapporter från Växjö Universitet (Matematik, naturvetenskap och teknik) 2008, ***]. Växjo: Växjö University Press 2008. Forthcoming

Holl, Alfred; Maydt, Dominique:
<u>Epistemological foundations of requirements engineering</u>.
In: Erkollar, Alptekin (ed.): *Enterprise and business management*. *A handbook for educators, consulters and practitioners*.
Marburg: Tectum 2007, 31-58, ISBN 978-3-8288-9282-8
[extended congress paper for <u>Requirements Days</u>, Nuremberg, Germany, May 2006]

Holl, Alfred; Feistner, Edith: *Mono-perspective views of multi-perspectivity: IS modeling and 'The blind men and the elephant'*. Växjö: Växjö University Press 2006 [= Acta Wexionensia 87/2006 (Information Systems)]; short version = contribution to: *Information Systems Research in Scandinavia (IRIS'27)*, Falkenberg/Sweden 2004, CD-ROM. Holl, Alfred; Valentin, Gregor: <u>Structured business process modeling</u>. Contribution to: *Information Systems Research in Scandinavia (IRIS'27)*, Falkenberg/Sweden 2004, CD-ROM.

Holl, Alfred; Auerochs, Robert:

<u>Analogisches Denken als Erkenntnisstrategie zur Modellbildung</u> <u>in der Wirtschaftsinformatik [Analogical thinking as a cognitive</u> strategy for model design in information systems].

In: Frank, Ulrich (ed.): Wissenschaftstheorie in Ökonomie und Wirtschaftsinformatik. Theoriebildung und –bewertung, Ontologien, Wissenmanagement.

Wiesbaden: DUV 2004, 367-389, ISBN 3-8244-0738-8.

Holl, Alfred; Krach, Thomas:

<u>Ubiquitäre IT – ubiquitärer naiver Realismus [Ubiquitous IT – ubiquitous naive realism]</u>.

In: Britzelmaier, Bernd et al. (ed.): Der Mensch im Netz. Ubiquitous Computing. - 4. Liechtensteinisches Wirtschaftsinformatik-Symposium an der FH Liechtenstein. Stuttgart: Teubner 2002, 53-69, ISBN 3-519-00375-9.

Holl, Alfred; Krach, Thomas; Mnich, Roman: <u>Geschäftsprozessmodellierung und Gestalttheorie [Business</u> <u>process modeling and theory of gestalt]</u>.

In: Britzelmaier, Bernd et al. (ed.): Information als Erfolgsfaktor. 2. Liechtensteinisches Wirtschaftsinformatik-Symposium an der FH Liechtenstein.

Stuttgart: Teubner 2000, 197-209, ISBN 3-519-00317-1.

Holl, Alfred; Scholz, Michael: <u>Objektorientierung und Poppers Drei-Welten-Modell als</u> <u>Theoriekerne der Wirtschaftsinformatik [Object orientation and</u> <u>Popper's three worlds as a basis of a theory of information</u> <u>systems]</u>.

In: Schütte, Reinhard et al. (ed.): Wirtschaftsinformatik und Wissenschaftstheorie. Grundpositionen und Theoriekerne. Arbeitsbericht 4 des Instituts für Produktion und industrielles Informationsmanagement.

Essen: Universität 1999, 91-105 und 168 f.

References to other authors

Backlund, Per:

<u>On the research approaches employed at recent European</u> <u>Conferences on Information Systems (ECIS 2002 – ECIS 2004)</u>. In: Proceedings of the 13th European Conference on Information Systems, Regensburg 2005

Hevner, Alan R.; March, Salvatore T.; Park, Jinsoo; Ram, Sudha: <u>Design science in information systems research</u>. MIS Quarterly 28(2004) 1, 75-105

Lorenz, Konrad (1903-1989): <u>Gestalt perception as fundamental to scientific knowledge</u> [original 1959 in German: <u>Gestaltwahrnehmung als Quelle</u> <u>wissenschaftlicher Erkenntnis</u>. Zeitschrift für experimentelle und angewandte Psychologie 6(1959) 118-165]. General systems 7 (1962) 37-56 [= Bertalanffy, L. v.; Rapoport, A. (ed.): Yearbook of the Society for General Systems Research].

Palvia, Prashant; En, Mao; Salam, A. F.; Soliman, Khalid S.: <u>Management information systems research: what's there in a</u> <u>methodology</u>? In: Communications of AIS 6(2003) 11, 289-308

Palvia, Prashant; Leary, David; En, Mao; Midha, Vishal; Pinjani, Praveen; Salam, A. F.:

<u>Research methodologies in MIS: an update</u>. In: Communications of AIS 6(2004) 14, 526-542

Riedl, Rupert: Begriff und Welt – Biologische Grundlagen des Erkennens und Begreifens. Berlin, Hamburg: Parey 1987.

Vollmer, Gerhard:

Evolution and projection. Approaches to a modern epistemology. Universitas 34(1992) 2, 114-126

Yourdon, Edward: *Modern structured analysis*. Englewood Cliffs NJ 1989.