1. Introduction

Cryptography is the science of keeping secrets secret. Assume a sender re-
ferred to here and in what follows as Alice (as is commonly used) wants to
send a message m to a receiver referred to as Bob. She uses an insecure com-
munication channel. For example, the channel could be a computer network
or a telephone line. There is a problem if the message contains confidential
information. The message could be intercepted and read by an eavesdropper.
Or even worse, the adversary, as usual referred to here as Fve, might be able
to modify the message during transmission in such a way that the legitimate
recipient Bob does not detect the manipulation.

One objective of cryptography is to provide methods for preventing such
attacks. Other objectives are discussed in Section 1.2.

1.1 Encryption and Secrecy

The fundamental and classical task of cryptography is to provide confidential-
ity by encryption methods. The message to be transmitted — it can be some
text, numerical data, an executable program or any other kind of information
— is called the plaintext. Alice encrypts the plaintext m and obtains the ci-
phertext c. The ciphertext c is transmitted to Bob. Bob turns the ciphertext
back into the plaintext by decryption. To decrypt, Bob needs some secret
information, a secret decryption key.' Adversary Eve still may intercept the
ciphertext. However, the encryption should guarantee secrecy and prevent
her from deriving any information about the plaintext from the observed
ciphertext.

Encryption is very old. For example, Caesar’s shift cipher? was introduced
more than 2000 years ago. Every encryption method provides an encryption
algorithm F and a decryption algorithm D. In classical encryption schemes,
both algorithms depend on the same secret key k. This key £ is used for both
encryption and decryption. These encryption methods are therefore called

! Sometimes the terms encipher and decipher are used instead of encrypt and
decrypt.

2 FBach plaintext character is replaced by the character 3 to the right modulo 26,
i.e. a is replaced by d, b by e,..., x by a, y by b and z by c.



2 1. Introduction

symmetric. For example, in Caesar’s cipher the secret key is the offset 3 of
the shift. We have

D(k, E(k,m)) = m for each plaintext m.

Symmetric encryption and the important example DES (data encryption
standard) are discussed in Chapter 2.

In 1976, W. Diffie and M.E. Hellman published their famous paper, New
Directions in Cryptography ([DifHel76]). There they introduced the revo-
lutionary concept of public-key cryptography. They provided a solution to
the long standing problem of key exchange and pointed the way to digital
signatures. The public-key encryption methods (comprehensively studied in
Chapter 3) are asymmetric. Each recipient of messages has his personal key
k = (pk, sk), consisting of two parts: pk is the encryption key and is made
public, sk is the decryption key and is kept secret. If Alice wants to send a
message m to Bob, she encrypts m by use of Bob’s publicly known encryption
key pk. Bob decrypts the ciphertext by use of his decryption key sk, which
is known only to him. We have

D(sk, E(pk,m)) = m.

Mathematically speaking, public-key encryption is a so-called one-way
function with a trapdoor. Everyone can easily encrypt a plaintext using the
public key pk, but the other direction is difficult. It is practically impossible
to deduce the plaintext from the ciphertext, without knowing the secret key
sk (which is called the trapdoor information).

Public-key encryption methods require more complex computations and
are less efficient than classical symmetric methods. Thus symmetric methods
are used for the encryption of large amounts of data. Before applying sym-
metric encryption, Alice and Bob have to agree on a key. To keep this key
secret, they need a secure communication channel. It is common practice to
use public-key encryption for this purpose.

1.2 The Objectives of Cryptography

Providing confidentiality is not the only objective of cryptography. Cryptog-
raphy is also used to provide solutions for other problems:

1. Data integrity. The receiver of a message should be able to check whether
the message was modified during transmission, either accidentally or de-
liberately. No one should be able to substitute a false message for the
original message, or for parts of it.

2. Authentication. The receiver of a message should be able to verify its
origin. No one should be able to send a message to Bob and pretend to
be Alice (data origin authentication). When initiating a communication,

Introduction to Cryptography by H. Delfs and H. Knebl



1.2 The Objectives of Cryptography 3

Alice and Bob should be able to identify each other (entity authentica-
tion).

3. Non-repudiation. The sender should not be able to later deny that she
sent a message.

If messages are written on paper, the medium — paper — provides a certain se-
curity against manipulation. Handwritten personal signatures are intended to
guarantee authentication and non-repudiation. If electronic media are used,
the medium itself provides no security at all, since it is easy to replace some
bytes in a message during its transmission over a computer network, and it
is particularly easy if the network is publicly accessible, like the Internet.

So, while encryption has a long history, the need for techniques provid-
ing data integrity and authentication resulted from the rapidly increasing
significance of electronic communication.

There are symmetric as well as public-key methods to ensure the integrity
of messages. Classical symmetric methods require a secret key k that is shared
by sender and receiver. The message m is augmented by a message authenti-
cation code (MAC). The code is generated by an algorithm and depends on
the secret key. The augmented message (m, MAC (k,m)) is protected against
modifications. The receiver may test the integrity of an incoming message
(m,m) by checking whether

MAC (k,m) = mm.

Message authentication codes may be implemented by keyed hash functions
(see Chapter 3).

Digital signatures require public-key methods (see Chapter 3 for examples
and details). As with classical handwritten signatures, they are intended to
provide authentication and non-repudiation. Note that non-repudiation is an
indispensable feature if digital signatures are used to sign contracts. Digital
signatures depend on the secret key of the signer — they can be generated only
by him. On the other hand, anyone can check whether a signature is valid,
by applying a publicly known verification algorithm Verify, which depends
on the public key of the signer. If Alice wants to sign the message m, she
applies the algorithm Sign with her secret key sk and gets the signature
Sign(sk, m). Bob receives a signature s for message m, and may then check
the signature by testing whether

Verify(pk, s,m) = ok,

with Alice’s public key pk.

It is common not to sign the message itself, but to apply a cryptographic
hash function (see Section 3.4) first and then sign the hash value. In schemes
like the famous RSA (named after its inventors: Rivest, Shamir and Adle-
man), the decryption algorithm is used to generate signatures and the en-
cryption algorithm is used to verify them. This approach to digital signatures

3 For the long history of cryptography, see [Kahn67].

(©Springer-Verlag Berlin Heidelberg 2002



4 1. Introduction

is therefore often referred to as the “hash-then-decrypt” paradigm (see Chap-
ter 3 for details). More sophisticated signature schemes, like the probabilistic
signature scheme (PSS), require more steps. Modifying the hash value by
pseudorandom sequences turns signing into a probabilistic procedure (see
Section 3.4.3).

Digital signatures depend on the message. Distinct messages yield dif-
ferent signatures. Thus, like classical message authentication codes, digital
signatures can also be used to guarantee the integrity of messages.

1.3 Attacks

The primary goal of cryptography is to keep the plaintext secret from eaves-
droppers trying to get some information about the plaintext. As discussed
before, adversaries may also be active and try to modify the message. Then,
cryptography is expected to guarantee the integrity of the messages. Adver-
saries are assumed to have complete access to the communication channel.

Cryptanalysis is the science of studying attacks against cryptographic
schemes. Successful attacks may, for example, recover the plaintext (or parts
of the plaintext) from the ciphertext, substitute parts of the original mes-
sage, or forge digital signatures. Cryptography and cryptanalysis are often
subsumed by the more general term cryptology.

A fundamental assumption in cryptanalysis was first stated by A. Kerkhoff
in the nineteenth century. It is usually referred to as Kerkhoff’s principle. It
states that the adversary knows all the details of the cryptosystem, includ-
ing algorithms and their implementations. According to this principle, the
security of a cryptosystem must be entirely based on the secret keys.

Attacks on the secrecy of an encryption scheme try to recover plaintexts
from ciphertexts, or even more drastically, to recover the secret key. The fol-
lowing survey is restricted to passive attacks. The adversary, as usual we call
her Eve, does not try to modify the messages. She monitors the communica-
tion channel and the end points of the channel. So she may not only intercept
the ciphertext, but (at least from time to time) she may be able to observe
the encryption and decryption of messages. She has no information about the
key. For example, Eve might be the operator of a bank computer. She sees
incoming ciphertexts and sometimes also the corresponding plaintexts. Or
she observes the outgoing plaintexts and the generated ciphertexts. Perhaps
she manages to let encrypt or decrypt messages of her own choice.

The possible attacks depend on the actual resources of the adversary Eve.
They are usually classified as follows:

1. Ciphertext-only attack. Eve has the ability to obtain ciphertexts. This
is likely to be the case in any encryption situation. Even if Eve cannot
perform the more sophisticated attacks described below, one must assume
that she can get access to encrypted messages. An encryption method
that cannot resist a ciphertext-only attack is completely insecure.

Introduction to Cryptography by H. Delfs and H. Knebl



1.4 Cryptographic Protocols )

2. Known-plaintext attack. Eve has the ability to obtain plaintext-ciphertext
pairs. Using the information from these pairs, she attempts to decrypt a
ciphertext for which she does not have the plaintext. At first glance, it
might appear that such information would not ordinarily be available to
an attacker. However, it very often is available. Messages may be sent in
standard formats which Eve knows.

3. Chosen-plaintext attack. Eve has the ability to obtain ciphertexts for
plaintexts of her choosing. Then she attempts to decrypt a ciphertext
for which she does not have the plaintext. While again this may seem
unlikely, there are many cases in which Eve can do just this. For example,
she sends some interesting information to her intended victim, which she
is confident he will encrypt and send out. This type of attack assumes
that Eve must first obtain whatever plaintext-ciphertext pairs she wants
and then do her analysis, without any further interaction. This means
that she only needs access to the encrypting device once.

4. Adaptively-chosen-plaintext attack. This is the same as the previous at-
tack, except now Eve may do some analysis on the plaintext-ciphertext
pairs, and subsequently, get more pairs. She may switch between gath-
ering pairs and performing the analysis as often as she likes. This means
that she has either lengthy access to the encrypting device or can some-
how make repeated use of it.

5. Chosen- and adaptively-chosen-ciphertext attack. These two attacks are
similar to the above plaintext attacks. Eve can choose ciphertexts and
gets the corresponding plaintexts. She has access to the decryption de-
vice.

1.4 Cryptographic Protocols

Encryption and decryption algorithms, cryptographic hash functions or
pseudorandom generators (see Section 2.1, Chapter 8) are the basic building
blocks (also called cryptographic primitives) for solving problems involving
secrecy, authentication or data integrity.

In many cases a single building block is not sufficient to solve the given
problem: different primitives must be combined. A series of steps must be
executed to accomplish a given task. Such a well-defined series of steps is
called a cryptographic protocol. As is also common, we add another condition:
we require that two or more parties are involved. We only use the term
protocol if at least two people are required to complete the task.

As a counter example, take a look at digital signature schemes. A typical
scheme for generating a digital signature first applies a cryptographic hash
function h to the message m and then, in a second step, computes the signa-
ture by applying a public-key decryption algorithm to the hash value h(m).
Both steps are done by one person. Thus, we do not call it a protocol.

(©Springer-Verlag Berlin Heidelberg 2002



6 1. Introduction

Typical examples of protocols are protocols for user identification. There
are many situations where the identity of a user Alice has to be verified.
Alice wants to login to a remote computer, for example, or to get access
to an account for electronic banking. Passwords or PIN numbers are used
for this purpose. This method is not always secure. For example, anyone
who observes Alice’s password or PIN when transmitted might be able to
impersonate her. We sketch a simple challenge-and-response protocol, which
prevents this attack (however, it is not perfect; see Section 4.2.1).

The protocol is based on a public-key signature scheme, and we assume
that Alice has a key k = (pk, sk) for this scheme. Now, Alice can prove her
identity to Bob in the following way.

1. Bob randomly chooses a “challenge” ¢ and sends it to Alice.

2. Alice signs ¢ with her secret key, s := Sign(sk,c), and sends the “re-
sponse” s to Bob.

3. Bob accepts Alice’s proof of identity, if Verify(pk,s,c) = ok.

Only Alice can return a valid signature of the challenge ¢, because only she
knows the secret key sk. Thus, Alice proves her identity, without showing her
secret. No one can observe Alice’s secret key, not even the verifier Bob.

Suppose that an eavesdropper Eve observed the exchanged messages.
Later, she wants to impersonate Alice. Since Bob selects his challenge ¢ at
random (from a huge set), the probability that he uses the same challenge
twice is very small. Therefore, Eve cannot gain any advantage by her obser-
vations.

The parties in a protocol can be friends or adversaries. Protocols can be
attacked. The attacks may be directed against the underlying cryptographic
algorithms or against the implementation of the algorithms and protocols.
There may also be attacks against a protocol itself. There may be passive
attacks performed by an eavesdropper, where the only purpose is to obtain
information. An adversary may also try to gain an advantage by actively
manipulating the protocol. She might pretend to be someone else, substitute
messages or replay old messages.

Important protocols for key exchange, electronic elections, digital cash
and interactive proofs of identity are discussed in Chapter 4.

1.5 Provable Security

It is desirable to design cryptosystems that are provably secure. Provably se-
cure means that mathematical proofs show that the cryptosystem resists cer-
tain types of attacks. Pioneering work in this field was done by C.E. Shannon.
In his information theory, he developed measures for the amount of informa-
tion associated with a message and the notion of perfect secrecy. A perfectly
secret cipher perfectly resists all ciphertext-only attacks. An adversary gets

Introduction to Cryptography by H. Delfs and H. Knebl



1.5 Provable Security 7

no information at all about the plaintext, even if his resources in comput-
ing power and time are unlimited. Vernam’s one-time pad (see Section 2.1),
which encrypts a message m by XORing it bitwise with a truly random bit
string, is the most famous perfectly secret cipher. It even resists all the pas-
sive attacks mentioned. This can be mathematically proven by Shannon’s
theory. Classical information-theoretic security is discussed in Section 9.1;
an introduction to Shannon’s information theory may be found in Appendix
B. Unfortunately, Vernam’s one-time pad and all perfectly secret ciphers are
usually impractical. It is not practical in most situations to generate and
handle truly random bit sequences of sufficient length as required for perfect
secrecy.

More recent approaches to provable security therefore abandon the ideal
of perfect secrecy and the (unrealistic) assumption of unbounded computing
power. The computational complexity of algorithms is taken into account.
Only attacks that might be feasible in practice are considered. Feasible means
that the attack can be performed by an efficient algorithm. Of course, here
the question about the right notion of efficiency arises. Certainly, algorithms
with non-polynomial running time are inefficient. Vice-versa algorithms with
polynomial running time are often considered as the efficient ones. In this
book, we also adopt this notion of efficiency.

The way a cryptographic scheme is attacked might be influenced by ran-
dom events. Adversary Eve might toss a coin to decide which case she tries
next. Therefore, probabilistic algorithms are used to model attackers. Break-
ing an encryption system, for example by a ciphertext-only attack, means that
a probabilistic algorithm with polynomial running time manages to derive in-
formation about the plaintext from the ciphertext, with some non-negligible
probability. Probabilistic algorithms can toss coins, and their control flow
may be at least partially directed by these random events. By using random
sources, they can be implemented in practice. They must not be confused
with non-deterministic algorithms. The notion of probabilistic (polynomial)
algorithms and the underlying probabilistic model are discussed in Chap-
ter 5.

The security of a public-key cryptosystem is based on the hardness of
some computational problem (there is no efficient algorithm for solving the
problem). For example, the secret keys of an RSA scheme could be easily
figured out if computing the prime factors of a large integer were possible.*
However, it is believed that factoring large integers is infeasible.® There are
no mathematical proofs for the hardness of the computational problems used
in public-key systems. Therefore, security proofs for public-key methods are
always conditional: they depend on the validity of the underlying assumption.

4 What “large” means depends on the available computing power. Today, a 1024-
bit integer is considered as large.

® It is not known whether breaking RSA is easier than factoring the modulus. See
Chapters 3 and 6 for a detailed discussion.

(©Springer-Verlag Berlin Heidelberg 2002



8 1. Introduction

The assumption usually states that a certain function f is one way; i.e. f
can be computed efficiently, but it is infeasible to compute x from f(x). The
assumptions, as well as the notion of a one-way function, can be made very
precise by the use of probabilistic polynomial algorithms. The probability of
successfully inverting the function by a probabilistic polynomial algorithm
is negligibly small, and negligibly small means that it is asymptotically less
than any given polynomial bound (see Chapter 6, Definition 6.12). Important
examples, like the factoring, discrete logarithm and quadratic residuosity
assumptions, are included in this book (see Chapter 6).

There are analogies to the classical notions of security. Shannon’s perfect
secrecy has a computational analogy: computational secrecy (or polynomial-
time indistinguishability). An encryption is perfectly secret if and only if an
adversary cannot distinguish between two plaintexts, even if her computing
resources are unlimited: if adversary Eve knows that a ciphertext c is the
encryption of either m or m’, she has no better chance than 1/2 of choosing
the right one. Computational secrecy means that Eve’s chance of successfully
applying a probabilistic polynomial algorithm is at most negligibly greater
than /2 (Chapter 9, Definition 9.14).

As a typical result, it is proven in Section 9.4 that public-key one-time
pads are computationally secret. This means, for example, that the RSA
public-key one-time pad is computationally secret under the sole assumption
that the RSA function is one way. There is no such strong security proof
for other RSA encryption schemes. A public-key one-time pad is similar to
Vernam’s one-time pad. The difference is that the message m is XORed with
a pseudorandom bit sequence which is generated from a short truly random
seed, by means of a one-way function.

Thus, one-way functions are not only the essential ingredients of public-
key encryption and digital signatures. They also yield computationally perfect
pseudorandom bit generators (Chapter 8). If f is a one-way function, it is not
only impossible to compute x from f(x), but certain bits (called hard-core
bits) of = are equally difficult to deduce. This feature is called the bit security
of a one-way function. For example, the least-significant bit is a hard-core bit
for the RSA function x +— ¢ mod n. Starting with a truly random seed,
repeatedly applying f and taking the hard-core bit in each step, you get
a pseudorandom bit sequence. These bit sequences cannot be distinguished
from truly random bit sequences by an efficient algorithm, or, equivalently
(Theorem of Yao, Section 8.2), it is practically impossible to predict the next
bit from the previous ones. So they are really computationally perfect.

The bit security of important one-way functions is studied in detail in
Chapter 7 including an in-depth analysis of the probabilities involved.

Randomness and the security of cryptographic schemes are closely related.
There is no security without randomness. An encryption method provides
secrecy only if the ciphertexts appear random to the adversary Eve. Vernam’s
one-time pad is perfectly secret since, due to the truly random key string k&,

Introduction to Cryptography by H. Delfs and H. Knebl



1.5 Provable Security 9

the encrypted message m @ k © is a truly random bit sequence for Eve. The
public-key one-time pad is computationally secret, because Eve applying an
efficient probabilistic algorithm cannot distinguish the pseudorandom key
string and, as a consequence, the ciphertext from a truly random sequence.

The ideal hash function used in a hash-then-decrypt-signature scheme
or in a message authentication code is a random function. It yields hash
values which cannot be distinguished from randomly selected and uniformly
distributed values. The security of signature schemes like the above mentioned
PSS (see Section 1.2) can be proven assuming that the underlying one-way
function is indeed one way and that the hash function used is an ideal one.
The hash functions used in practice are believed to be good approximations
to this ideal. However, there are no proofs, and there were surprising errors
in the past (see Chapter 3).

We distinguished different types of attacks on an encryption scheme. In a
similar way, the attacks on signature schemes can be classified and different
levels of security can be defined. We introduce this classification in Chap-
ter 10 and give examples of signature schemes, whose security can be proven
solely under standard assumptions (like the factoring or the strong RSA as-
sumption). No assumptions on the randomness of a hash function have to be
made, in contrast, for example, to schemes like PSS. A typical security proof
for the highest level of security is included. For the given signature scheme,
we show that not a single signature can be forged, even if the attacker Eve
is able to obtain valid signatures from the legitimate signer, for messages she
has chosen adaptively.

The security proofs for public-key systems are always conditional and de-
pend on (widely believed, but unproven) assumptions. On the other hand,
Shannon’s notion of perfect secrecy and, in particular, the perfect secrecy
of Vernam’s one-time pad are unconditional. Although perfect unconditional
security is not reachable in most practical situations, there are promising at-
tempts to design practical cryptosystems which provably come close to perfect
information-theoretic security. The proofs are based on classical information-
theoretic methods and do not depend on unproven assumptions. The security
relies on the fact that communication channels are noisy or on the limited
storage capacity of an adversary. Some results in this approach are reviewed
in the chapter on provably secure encryption (Section 9.5).

6 @ denotes the bitwise XOR operator.

(©Springer-Verlag Berlin Heidelberg 2002



